Scalable Preparation and Precise Control of Carbon Materials via Molten Salt Liquid Seal Strategy in Air

IF 7.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ming Liu, Huimin Li, Bin Zhang, Yanzi Lei, Luyao Luo, Hai Wang
{"title":"Scalable Preparation and Precise Control of Carbon Materials via Molten Salt Liquid Seal Strategy in Air","authors":"Ming Liu, Huimin Li, Bin Zhang, Yanzi Lei, Luyao Luo, Hai Wang","doi":"10.1021/acssuschemeng.4c08670","DOIUrl":null,"url":null,"abstract":"Revealing the relations between the physical and chemical properties of carbon materials with defined composition and structure is an important topic. However, traditional organic carbon precursor-derived carbon materials lack effective fine-tuning methods due to the uncontrollable temperature changes. Herein, a novel strategy termed a “molten salt liquid seal” is introduced to address this issue. Impressively, the uppermost KBr layer in the provided configuration effectively contains the release of carbon organic precursor at low temperatures and forms a protective barrier at high temperatures, thereby inhibiting the oxidation of carbon materials in air. Furthermore, we propose a corresponding “liquid seal” mechanism by monitoring the temperature-dependent morphological evolution of molten salts and carbon materials. Remarkably, the heteroatoms, defects, etc., in the carbon material can be precisely controlled within the range of 100 °C and 0.5 h per interval. Moreover, the carbonization yield is close to or even higher than that of the conventional process under an Ar atmosphere. We also validate the advantages of the resultant carbon materials as anodes in sodium-ion batteries. This innovative approach not only minimizes the reliance of inert atmospheres but also enables the high-yield fabrication of carbon materials in air, significantly advancing the field toward more sustainable practices.","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"65 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssuschemeng.4c08670","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Revealing the relations between the physical and chemical properties of carbon materials with defined composition and structure is an important topic. However, traditional organic carbon precursor-derived carbon materials lack effective fine-tuning methods due to the uncontrollable temperature changes. Herein, a novel strategy termed a “molten salt liquid seal” is introduced to address this issue. Impressively, the uppermost KBr layer in the provided configuration effectively contains the release of carbon organic precursor at low temperatures and forms a protective barrier at high temperatures, thereby inhibiting the oxidation of carbon materials in air. Furthermore, we propose a corresponding “liquid seal” mechanism by monitoring the temperature-dependent morphological evolution of molten salts and carbon materials. Remarkably, the heteroatoms, defects, etc., in the carbon material can be precisely controlled within the range of 100 °C and 0.5 h per interval. Moreover, the carbonization yield is close to or even higher than that of the conventional process under an Ar atmosphere. We also validate the advantages of the resultant carbon materials as anodes in sodium-ion batteries. This innovative approach not only minimizes the reliance of inert atmospheres but also enables the high-yield fabrication of carbon materials in air, significantly advancing the field toward more sustainable practices.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Sustainable Chemistry & Engineering
ACS Sustainable Chemistry & Engineering CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.80
自引率
4.80%
发文量
1470
审稿时长
1.7 months
期刊介绍: ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment. The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信