A novel geminivirus‐derived 3′ flanking sequence of terminator mediates the gene expression enhancement

IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Yi Zhang, Yibo Xian, Heng Yang, Xuangang Yang, Tianli Yu, Sai Liu, Minting Liang, Xianzhi Jiang, Shulin Deng
{"title":"A novel geminivirus‐derived 3′ flanking sequence of terminator mediates the gene expression enhancement","authors":"Yi Zhang, Yibo Xian, Heng Yang, Xuangang Yang, Tianli Yu, Sai Liu, Minting Liang, Xianzhi Jiang, Shulin Deng","doi":"10.1111/pbi.14561","DOIUrl":null,"url":null,"abstract":"SummaryExploring the new elements to re‐design the expression cassette is crucial in synthetic biology. Viruses are one of the most important sources for exploring gene expression elements. In this study, we found that the DNA sequence of the SBG51 deltasatellite from the <jats:italic>Sweet potato leaf curl virus</jats:italic> (SPLCV) greatly enhanced the gene expression when flanked downstream of the terminator. The SBG51 sequence increased transient <jats:italic>GFP</jats:italic> gene expression in <jats:italic>Nicotiana benthamiana</jats:italic> leaves by up to ~6 times and ~10 times compared to the gene expression controlled by the UBQ10 promoter and 35S promoter alone, respectively. The increased <jats:italic>GFP</jats:italic> gene expression level contributed to the continuous accumulation of GFP protein and GFP fluorescence until 8 days post‐inoculation (dpi). The SBG51 sequence also enhanced the gene expression in the transgenic Arabidopsis plants and maintained the spatio‐temporal pattern of the <jats:italic>FLOWERING LOCUS T</jats:italic> (<jats:italic>FT</jats:italic>) and <jats:italic>TOO MANY MOUTHS</jats:italic> (<jats:italic>TMM</jats:italic>) promoters. We identified a 123 bp of AT‐rich sequence containing seven “ATAAA” or “TTAAA” elements from the SBG51 DNA, which had the gene expression enhancement effect. Furthermore, the artificial synthetic sequences containing tandem repeated “ATAAA” or “TTAAA” elements were sufficient to increase the gene expression but did not alter the polyadenylation of mRNA, similar to the function of matrix attachment regions (MAR). Additionally, the compact artificial synthetic sequence also had an effect on yeast when the expression cassette was integrated into the genome. We conclude that the geminivirus deltasatellite‐derived sequence and the “ATAAA”/“TTAAA” elements are powerful tools for enhancing gene expression.","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"1 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/pbi.14561","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

SummaryExploring the new elements to re‐design the expression cassette is crucial in synthetic biology. Viruses are one of the most important sources for exploring gene expression elements. In this study, we found that the DNA sequence of the SBG51 deltasatellite from the Sweet potato leaf curl virus (SPLCV) greatly enhanced the gene expression when flanked downstream of the terminator. The SBG51 sequence increased transient GFP gene expression in Nicotiana benthamiana leaves by up to ~6 times and ~10 times compared to the gene expression controlled by the UBQ10 promoter and 35S promoter alone, respectively. The increased GFP gene expression level contributed to the continuous accumulation of GFP protein and GFP fluorescence until 8 days post‐inoculation (dpi). The SBG51 sequence also enhanced the gene expression in the transgenic Arabidopsis plants and maintained the spatio‐temporal pattern of the FLOWERING LOCUS T (FT) and TOO MANY MOUTHS (TMM) promoters. We identified a 123 bp of AT‐rich sequence containing seven “ATAAA” or “TTAAA” elements from the SBG51 DNA, which had the gene expression enhancement effect. Furthermore, the artificial synthetic sequences containing tandem repeated “ATAAA” or “TTAAA” elements were sufficient to increase the gene expression but did not alter the polyadenylation of mRNA, similar to the function of matrix attachment regions (MAR). Additionally, the compact artificial synthetic sequence also had an effect on yeast when the expression cassette was integrated into the genome. We conclude that the geminivirus deltasatellite‐derived sequence and the “ATAAA”/“TTAAA” elements are powerful tools for enhancing gene expression.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Biotechnology Journal
Plant Biotechnology Journal 生物-生物工程与应用微生物
CiteScore
20.50
自引率
2.90%
发文量
201
审稿时长
1 months
期刊介绍: Plant Biotechnology Journal aspires to publish original research and insightful reviews of high impact, authored by prominent researchers in applied plant science. The journal places a special emphasis on molecular plant sciences and their practical applications through plant biotechnology. Our goal is to establish a platform for showcasing significant advances in the field, encompassing curiosity-driven studies with potential applications, strategic research in plant biotechnology, scientific analysis of crucial issues for the beneficial utilization of plant sciences, and assessments of the performance of plant biotechnology products in practical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信