Perovskite‐Inspired Cs₂AgBi₂I₉: A Promising Photovoltaic Absorber for Diverse Indoor Environments

IF 24.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Mokurala Krishnaiah, Kuntal Singh, Sanchi Monga, Akash Tripathi, Sougata Karmakar, Ramesh Kumar, Christos Tyrpenou, George Volonakis, Debjit Manna, Paavo Mäkinen, K. V. Adarsh, Saswata Bhattacharya, G. Krishnamurthy Grandhi, K. D. M. Rao, Paola Vivo
{"title":"Perovskite‐Inspired Cs₂AgBi₂I₉: A Promising Photovoltaic Absorber for Diverse Indoor Environments","authors":"Mokurala Krishnaiah, Kuntal Singh, Sanchi Monga, Akash Tripathi, Sougata Karmakar, Ramesh Kumar, Christos Tyrpenou, George Volonakis, Debjit Manna, Paavo Mäkinen, K. V. Adarsh, Saswata Bhattacharya, G. Krishnamurthy Grandhi, K. D. M. Rao, Paola Vivo","doi":"10.1002/aenm.202404547","DOIUrl":null,"url":null,"abstract":"Indoor photovoltaics (IPVs) using low‐toxicity bismuth‐based perovskite‐inspired materials (PIMs) can potentially power the growing number of Internet of Things devices sustainably. However, modest indoor power conversion efficiency (PCE) values are reported due to intrinsic limitations of PIMs, particularly regarding charge carrier separation and transport. Herein, polycrystalline Cs₂AgBi₂I₉ thin films are developed with high phase purity and study their fundamental structural and photophysical properties. The comprehensive experimental and computational study reveals unique optoelectronic properties of Cs₂AgBi₂I₉ compared to other bismuth‐containing PIMs, including weak electron‐phonon coupling and low exciton binding energy (40 meV). This study also demonstrates the feasibility of large and highly mobile polaron formation in Cs₂AgBi₂I₉, supported by the observation of a phonon bottleneck and a delayed hot carrier lifetime of over 200 ps, which suggests enhanced defect tolerance and transport properties. Motivated by the suitable bandgap of this absorber (1.78 eV), the first Cs₂AgBi₂I₉‐based IPVs are developed, achieving a PCE of ≈8% at 1000 lux. Notably, the devices maintain high performance across various indoor environments with white LED color temperatures ranging from 2700 to 6500 K. The calculated theoretical PCE limit of >40% and the promising operational stability position Cs₂AgBi₂I₉ as one of the most intriguing candidates for sustainable IPVs.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"2 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202404547","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Indoor photovoltaics (IPVs) using low‐toxicity bismuth‐based perovskite‐inspired materials (PIMs) can potentially power the growing number of Internet of Things devices sustainably. However, modest indoor power conversion efficiency (PCE) values are reported due to intrinsic limitations of PIMs, particularly regarding charge carrier separation and transport. Herein, polycrystalline Cs₂AgBi₂I₉ thin films are developed with high phase purity and study their fundamental structural and photophysical properties. The comprehensive experimental and computational study reveals unique optoelectronic properties of Cs₂AgBi₂I₉ compared to other bismuth‐containing PIMs, including weak electron‐phonon coupling and low exciton binding energy (40 meV). This study also demonstrates the feasibility of large and highly mobile polaron formation in Cs₂AgBi₂I₉, supported by the observation of a phonon bottleneck and a delayed hot carrier lifetime of over 200 ps, which suggests enhanced defect tolerance and transport properties. Motivated by the suitable bandgap of this absorber (1.78 eV), the first Cs₂AgBi₂I₉‐based IPVs are developed, achieving a PCE of ≈8% at 1000 lux. Notably, the devices maintain high performance across various indoor environments with white LED color temperatures ranging from 2700 to 6500 K. The calculated theoretical PCE limit of >40% and the promising operational stability position Cs₂AgBi₂I₉ as one of the most intriguing candidates for sustainable IPVs.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信