GC-DFT-Based Dynamic Product Distribution Reveals Enhanced CO2-to-Methanol Electrocatalysis Durability by Heterogeneous CoPc

IF 4.8 2区 化学 Q2 CHEMISTRY, PHYSICAL
Zhiyuan Xu, Chao Ma, Beibei Tang, Jieyang Dong, Qi Zhang
{"title":"GC-DFT-Based Dynamic Product Distribution Reveals Enhanced CO2-to-Methanol Electrocatalysis Durability by Heterogeneous CoPc","authors":"Zhiyuan Xu, Chao Ma, Beibei Tang, Jieyang Dong, Qi Zhang","doi":"10.1021/acs.jpclett.4c02755","DOIUrl":null,"url":null,"abstract":"Heterogeneous cobalt phthalocyanine has emerged as a promising molecular catalyst for electrochemical reduction of CO<sub>2</sub> to methanol. Boosting both electrocatalytic durability and selectivity remains a great challenge, which is more difficult with unknown regulation factors for the HER side reaction. Herein, to discover the key to balancing the durability and selectivity, as well as HER regulation, we carried out GC-DFT calculations, based on which dynamic product distribution modeling was conducted to visually present the variation of the product distribution within the applied voltage range. The strongly electron-donating NMe<sub>2</sub>-substituted CoPc is found to be an excellent candidate. The dynamic product distribution reveals that the key to selectivity and durability balance is to regulate both the potential of the highest methanol Faradaic efficiency and the corresponding energy barrier of the selectivity-determining step for hydrogenated CoPc. The pivotal factor in HER regulation stems from hindered H adsorption due to ligand hydrogenation, arising from the decreased Co-to-H charge transfer. The dynamic product distribution analysis provides intuitive theoretical guidance for highly selective and durable CO<sub>2</sub> electroreduction.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"113 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.4c02755","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Heterogeneous cobalt phthalocyanine has emerged as a promising molecular catalyst for electrochemical reduction of CO2 to methanol. Boosting both electrocatalytic durability and selectivity remains a great challenge, which is more difficult with unknown regulation factors for the HER side reaction. Herein, to discover the key to balancing the durability and selectivity, as well as HER regulation, we carried out GC-DFT calculations, based on which dynamic product distribution modeling was conducted to visually present the variation of the product distribution within the applied voltage range. The strongly electron-donating NMe2-substituted CoPc is found to be an excellent candidate. The dynamic product distribution reveals that the key to selectivity and durability balance is to regulate both the potential of the highest methanol Faradaic efficiency and the corresponding energy barrier of the selectivity-determining step for hydrogenated CoPc. The pivotal factor in HER regulation stems from hindered H adsorption due to ligand hydrogenation, arising from the decreased Co-to-H charge transfer. The dynamic product distribution analysis provides intuitive theoretical guidance for highly selective and durable CO2 electroreduction.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信