Research progress and application status of organoid in breast cancer subtypes.

0 MEDICINE, RESEARCH & EXPERIMENTAL
Qiuxia Zhang, Min Wang, Li You, Chen Chen, Jia Feng, Miao Song, Kui Yang, Xuexue Liu, Guangrong Li, Jinbo Liu
{"title":"Research progress and application status of organoid in breast cancer subtypes.","authors":"Qiuxia Zhang, Min Wang, Li You, Chen Chen, Jia Feng, Miao Song, Kui Yang, Xuexue Liu, Guangrong Li, Jinbo Liu","doi":"10.17305/bb.2024.11450","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer (BC) is a prevalent malignant tumor that poses a significant health risk to women. The complexity of basic BC research and clinical treatment is influenced by multiple factors, including age, fertility, hormone metabolism, molecular subtypes, and tumor grading and staging. Traditional in vitro models often fall short of meeting modern research demands, whereas organoids-an emerging 3D primary culture technology-offer a unique platform that better replicates the tumor microenvironment (TME). Coupled with advances in high-throughput sequencing technologies, organoids have become increasingly valuable in biological and chemical research. Currently, the most widely used organoid model in BC research is the patient-derived organoid (PDO) model, which is generated directly from original tumor tissues. This paper aims to summarize the current status of PDO models across various BC subtypes, highlighting recent advances in genetics, mechanisms of drug resistance, identification of new therapeutic targets, and approaches to personalized treatment. In conclusion, the development of clinical precision medicine urgently requires in vitro models capable of accurately simulating the unique molecular subtypes of patients. This review will examine the challenges and future prospects of organoid models in BC research, offering new insights into the fundamental mechanisms of BC and paving the way for more effective personalized therapies.</p>","PeriodicalId":72398,"journal":{"name":"Biomolecules & biomedicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules & biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17305/bb.2024.11450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Breast cancer (BC) is a prevalent malignant tumor that poses a significant health risk to women. The complexity of basic BC research and clinical treatment is influenced by multiple factors, including age, fertility, hormone metabolism, molecular subtypes, and tumor grading and staging. Traditional in vitro models often fall short of meeting modern research demands, whereas organoids-an emerging 3D primary culture technology-offer a unique platform that better replicates the tumor microenvironment (TME). Coupled with advances in high-throughput sequencing technologies, organoids have become increasingly valuable in biological and chemical research. Currently, the most widely used organoid model in BC research is the patient-derived organoid (PDO) model, which is generated directly from original tumor tissues. This paper aims to summarize the current status of PDO models across various BC subtypes, highlighting recent advances in genetics, mechanisms of drug resistance, identification of new therapeutic targets, and approaches to personalized treatment. In conclusion, the development of clinical precision medicine urgently requires in vitro models capable of accurately simulating the unique molecular subtypes of patients. This review will examine the challenges and future prospects of organoid models in BC research, offering new insights into the fundamental mechanisms of BC and paving the way for more effective personalized therapies.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信