Adriana Lucia-Sanz, Shengyun Peng, Chung Yin Joey Leung, Animesh Gupta, Justin R Meyer, Joshua S Weitz
{"title":"Inferring strain-level mutational drivers of phage-bacteria interaction phenotypes arising during coevolutionary dynamics.","authors":"Adriana Lucia-Sanz, Shengyun Peng, Chung Yin Joey Leung, Animesh Gupta, Justin R Meyer, Joshua S Weitz","doi":"10.1093/ve/veae104","DOIUrl":null,"url":null,"abstract":"<p><p>The enormous diversity of bacteriophages and their bacterial hosts presents a significant challenge to predict which phages infect a focal set of bacteria. Infection is largely determined by complementary-and largely uncharacterized-genetics of adsorption, injection, cell take-over, and lysis. Here we present a machine learning approach to predict phage-bacteria interactions trained on genome sequences of and phenotypic interactions among 51 <i>Escherichia coli</i> strains and 45 phage λ strains that coevolved in laboratory conditions for 37 days. Leveraging multiple inference strategies and without <i>a priori</i> knowledge of driver mutations, this framework predicts both who infects whom and the quantitative levels of infections across a suite of 2,295 potential interactions. We found that the most effective approach inferred interaction phenotypes from independent contributions from phage and bacteria mutations, accurately predicting 86% of interactions while reducing the relative error in the estimated strength of the infection phenotype by 40%. Feature selection revealed key phage λ and <i>Escherchia coli</i> mutations that have a significant influence on the outcome of phage-bacteria interactions, corroborating sites previously known to affect phage λ infections, as well as identifying mutations in genes of unknown function not previously shown to influence bacterial resistance. The method's success in recapitulating strain-level infection outcomes arising during coevolutionary dynamics may also help inform generalized approaches for imputing genetic drivers of interaction phenotypes in complex communities of phage and bacteria.</p>","PeriodicalId":56026,"journal":{"name":"Virus Evolution","volume":"10 1","pages":"veae104"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11666707/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virus Evolution","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/ve/veae104","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The enormous diversity of bacteriophages and their bacterial hosts presents a significant challenge to predict which phages infect a focal set of bacteria. Infection is largely determined by complementary-and largely uncharacterized-genetics of adsorption, injection, cell take-over, and lysis. Here we present a machine learning approach to predict phage-bacteria interactions trained on genome sequences of and phenotypic interactions among 51 Escherichia coli strains and 45 phage λ strains that coevolved in laboratory conditions for 37 days. Leveraging multiple inference strategies and without a priori knowledge of driver mutations, this framework predicts both who infects whom and the quantitative levels of infections across a suite of 2,295 potential interactions. We found that the most effective approach inferred interaction phenotypes from independent contributions from phage and bacteria mutations, accurately predicting 86% of interactions while reducing the relative error in the estimated strength of the infection phenotype by 40%. Feature selection revealed key phage λ and Escherchia coli mutations that have a significant influence on the outcome of phage-bacteria interactions, corroborating sites previously known to affect phage λ infections, as well as identifying mutations in genes of unknown function not previously shown to influence bacterial resistance. The method's success in recapitulating strain-level infection outcomes arising during coevolutionary dynamics may also help inform generalized approaches for imputing genetic drivers of interaction phenotypes in complex communities of phage and bacteria.
期刊介绍:
Virus Evolution is a new Open Access journal focusing on the long-term evolution of viruses, viruses as a model system for studying evolutionary processes, viral molecular epidemiology and environmental virology.
The aim of the journal is to provide a forum for original research papers, reviews, commentaries and a venue for in-depth discussion on the topics relevant to virus evolution.