[The protective effect of lycopene on lung oxidative damage induced by atmospheric fine particulate matter exposure in rats].

Tao Han, Yanhui Yang, Hongzhi Pan
{"title":"[The protective effect of lycopene on lung oxidative damage induced by atmospheric fine particulate matter exposure in rats].","authors":"Tao Han, Yanhui Yang, Hongzhi Pan","doi":"10.19813/j.cnki.weishengyanjiu.2024.06.024","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To investigate the protective effect of lycopene on lung oxidative damage induced by atmospheric fine particulate matter(PM_(2.5)) in rats.</p><p><strong>Methods: </strong>Sixty 7-week-old male Sprague-Dawley rats were randomly divided into six groups: normal control group, PM_(2.5) model group, reference control group(vitamin E dose group, 7.5 mg/kg), and three lycopene groups with low-dose(5 mg/kg), medium dose(15 mg/kg) and high dose(30 mg/kg), with 10 rats in each group. Except for the control group, all groups were exposed to PM_(2.5) suspension intratracheally(equivalent to 7.5 mg/kg), poisoning 3 times a week, with an interval of 24 hours between each test. The vitamin E intervention group dissolved the salad oil with vitamin E by daily gavage, while the control group received an equal amounts of physiological saline. From the first day of exposure, lycopene was given daily via gavage for 4 weeks. Lycopene groups received lycopene dissolved in salad oil, while control and model groups received salad oil of the same volume. After 4 weeks, all rats were killed. Lung pathology sections were made and serum and lung tissue were collected and homogenized, centrifuge and collect the supernatant. Using UV visible spectrophotometry to measure levels of glutathione peroxidase(GSH-Px), glutataione(GSH), superoxide dismutase(SOD), total antioxidant capacity(T-AOC), malondialdehyde(MDA), glutathione S-transferase(GST), catalase(CAT), hydroxyl radical(OH), nitric oxide(NO). Using enzyme-linked immunosorbent Assays(ELISA) to measure levels of tumor necrosis facto-α(TNF-α), interleukin-6(IL-6), and 8-hydroxy-2-deoxyguanosine(8-OHdG). Lung histopathology was also observed.</p><p><strong>Results: </strong>Compared to the normal control group, there were significant differences in the content of GSH((9.47±1.37)mg/g vs. (11.10±3.82)mg/g), SOD((9.43±2.41)U/mg vs. (13.82±4.64)U/mg), CAT((5.35±1.88)U/mg vs. (9.54±3.06)U/mg), 8-OHdG((5.52±1.66)μg/g vs. (4.76±1.01)μg/g) in the serum, and GSH((2.19±0.29)mg/g vs. (3.18±0.49)mg/g), SOD((23.98±4.20)U/mg vs. (31.95±5.08)U/mg), CAT((5.85±1.95)U/mg vs. (3.57±1.96)U/mg), GSH-Px((49.15±7.01)mg/g vs. (68.46±11.15)mg/g), OH·((74.02±12.84)U/mg vs. (51.03±14.85)U/mg), TNF-α((5.57±0.72)ng/g vs. (7.83±1.60)ng/g), IL-6((2.68±0.39)μg/g vs. (3.82±1.35)μg/g) in lung tissue homogenates of PM_(2.5) group(P&lt;0.05). These indicated that there were oxidative damage to the body. Compared to the PM_(2.5) group, there were significant differences in the content of GSH((10.57±2.88)mg/g vs. (9.47±1.37)mg/g), SOD((13.51±2.95)U/mg vs. (9.43±2.41)U/mg), 8-OHdG((4.38±0.26)μg/g vs. (5.52±1.66)μg/g) in the serum and GSH((2.72±0.49)mg/g vs. (2.19±0.29)mg/g), GSH-Px((63.46±17.03)mg/g vs. (49.15±7.01)), CAT((3.72±1.28)U/mg vs. (5.85±1.95)U/mg), OH·((65.73±14.88)U/mg vs. (74.02±12.84)U/mg), NO((3.83±1.60)μmol/mg vs. (2.48±1.49)μmol/mg), TNF-α((7.49±1.28)ng/g vs. (5.57±0.72)ng/g), IL-6((3.77±1.35)μg/g vs. (2.68±0.39)μg/g) in lung tissue homogenates of the high-dose lycopene group(P&lt;0.05); the content of GSH((10.57±2.88)mg/g vs. (9.43±2.41)mg/g), CAT((10.61±4.41)U/mg vs. (5.35±1.88)mg/g) in the serum, and GSH((2.77±0.75)mg/g vs. (2.19±0.29)mg/g), SOD((30.88±9.65)U/mg vs. (23.98±4.20)U/mg), CAT((4.52±1.30)U/mg vs. (5.85±1.95)U/mg), TNF-α((7.37±2.50)ng/g vs. (5.57±0.72)ng/g), IL-6((3.80±1.36)μg/g vs. (2.68±0.39)μg/g) in lung tissue homogenates of the medium-dose group(P&lt;0.01). the content of GSH((10.64±2.71)mg/g vs. (9.47±1.37)mg/g), SOD((13.51±2.95)U/mg vs. (9.43±2.41)U/mg) in the serum, and OH·((67.29±16.11)U/mg vs. (74.02±12.84)U/mg) in lung tissue homogenates of the vitamin E group(P&lt;0.05). The PM_(2.5) group had alveolar structure destruction, alveolar septal thickening, pulmonary interstitial oedema, inflammatory infiltration. In the lycopene high-dose intervention group had intact alveolar structure, with a few neutrophil infiltration inside and outside the bronchiolar lumen, the aggregation degree of inflammatory cells was lower than that of the PM_(2.5) group, blood vessels were slightly dilated and congested, and the pulmonary interstitium was slightly widened, medium dose and low dose of lycopene are more obvious. In the vitamin E group performed similar to the lycopene medium-dose intervention group. suggesting a protective effect of lycopene on lung tissue integrity.</p><p><strong>Conclusion: </strong>Lycopene exhibits protective effects against PM_(2.5)-induced oxidative lung damage, likely through its enhancement of antioxidant enzyme activities, reduction of free radical-induced oxidative damage, and stabilization of biological membranes.</p>","PeriodicalId":57744,"journal":{"name":"卫生研究","volume":"53 6","pages":"999-1006"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"卫生研究","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.19813/j.cnki.weishengyanjiu.2024.06.024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: To investigate the protective effect of lycopene on lung oxidative damage induced by atmospheric fine particulate matter(PM_(2.5)) in rats.

Methods: Sixty 7-week-old male Sprague-Dawley rats were randomly divided into six groups: normal control group, PM_(2.5) model group, reference control group(vitamin E dose group, 7.5 mg/kg), and three lycopene groups with low-dose(5 mg/kg), medium dose(15 mg/kg) and high dose(30 mg/kg), with 10 rats in each group. Except for the control group, all groups were exposed to PM_(2.5) suspension intratracheally(equivalent to 7.5 mg/kg), poisoning 3 times a week, with an interval of 24 hours between each test. The vitamin E intervention group dissolved the salad oil with vitamin E by daily gavage, while the control group received an equal amounts of physiological saline. From the first day of exposure, lycopene was given daily via gavage for 4 weeks. Lycopene groups received lycopene dissolved in salad oil, while control and model groups received salad oil of the same volume. After 4 weeks, all rats were killed. Lung pathology sections were made and serum and lung tissue were collected and homogenized, centrifuge and collect the supernatant. Using UV visible spectrophotometry to measure levels of glutathione peroxidase(GSH-Px), glutataione(GSH), superoxide dismutase(SOD), total antioxidant capacity(T-AOC), malondialdehyde(MDA), glutathione S-transferase(GST), catalase(CAT), hydroxyl radical(OH), nitric oxide(NO). Using enzyme-linked immunosorbent Assays(ELISA) to measure levels of tumor necrosis facto-α(TNF-α), interleukin-6(IL-6), and 8-hydroxy-2-deoxyguanosine(8-OHdG). Lung histopathology was also observed.

Results: Compared to the normal control group, there were significant differences in the content of GSH((9.47±1.37)mg/g vs. (11.10±3.82)mg/g), SOD((9.43±2.41)U/mg vs. (13.82±4.64)U/mg), CAT((5.35±1.88)U/mg vs. (9.54±3.06)U/mg), 8-OHdG((5.52±1.66)μg/g vs. (4.76±1.01)μg/g) in the serum, and GSH((2.19±0.29)mg/g vs. (3.18±0.49)mg/g), SOD((23.98±4.20)U/mg vs. (31.95±5.08)U/mg), CAT((5.85±1.95)U/mg vs. (3.57±1.96)U/mg), GSH-Px((49.15±7.01)mg/g vs. (68.46±11.15)mg/g), OH·((74.02±12.84)U/mg vs. (51.03±14.85)U/mg), TNF-α((5.57±0.72)ng/g vs. (7.83±1.60)ng/g), IL-6((2.68±0.39)μg/g vs. (3.82±1.35)μg/g) in lung tissue homogenates of PM_(2.5) group(P<0.05). These indicated that there were oxidative damage to the body. Compared to the PM_(2.5) group, there were significant differences in the content of GSH((10.57±2.88)mg/g vs. (9.47±1.37)mg/g), SOD((13.51±2.95)U/mg vs. (9.43±2.41)U/mg), 8-OHdG((4.38±0.26)μg/g vs. (5.52±1.66)μg/g) in the serum and GSH((2.72±0.49)mg/g vs. (2.19±0.29)mg/g), GSH-Px((63.46±17.03)mg/g vs. (49.15±7.01)), CAT((3.72±1.28)U/mg vs. (5.85±1.95)U/mg), OH·((65.73±14.88)U/mg vs. (74.02±12.84)U/mg), NO((3.83±1.60)μmol/mg vs. (2.48±1.49)μmol/mg), TNF-α((7.49±1.28)ng/g vs. (5.57±0.72)ng/g), IL-6((3.77±1.35)μg/g vs. (2.68±0.39)μg/g) in lung tissue homogenates of the high-dose lycopene group(P<0.05); the content of GSH((10.57±2.88)mg/g vs. (9.43±2.41)mg/g), CAT((10.61±4.41)U/mg vs. (5.35±1.88)mg/g) in the serum, and GSH((2.77±0.75)mg/g vs. (2.19±0.29)mg/g), SOD((30.88±9.65)U/mg vs. (23.98±4.20)U/mg), CAT((4.52±1.30)U/mg vs. (5.85±1.95)U/mg), TNF-α((7.37±2.50)ng/g vs. (5.57±0.72)ng/g), IL-6((3.80±1.36)μg/g vs. (2.68±0.39)μg/g) in lung tissue homogenates of the medium-dose group(P<0.01). the content of GSH((10.64±2.71)mg/g vs. (9.47±1.37)mg/g), SOD((13.51±2.95)U/mg vs. (9.43±2.41)U/mg) in the serum, and OH·((67.29±16.11)U/mg vs. (74.02±12.84)U/mg) in lung tissue homogenates of the vitamin E group(P<0.05). The PM_(2.5) group had alveolar structure destruction, alveolar septal thickening, pulmonary interstitial oedema, inflammatory infiltration. In the lycopene high-dose intervention group had intact alveolar structure, with a few neutrophil infiltration inside and outside the bronchiolar lumen, the aggregation degree of inflammatory cells was lower than that of the PM_(2.5) group, blood vessels were slightly dilated and congested, and the pulmonary interstitium was slightly widened, medium dose and low dose of lycopene are more obvious. In the vitamin E group performed similar to the lycopene medium-dose intervention group. suggesting a protective effect of lycopene on lung tissue integrity.

Conclusion: Lycopene exhibits protective effects against PM_(2.5)-induced oxidative lung damage, likely through its enhancement of antioxidant enzyme activities, reduction of free radical-induced oxidative damage, and stabilization of biological membranes.

[番茄红素对大气细颗粒物暴露大鼠肺氧化损伤的保护作用]。
目的:探讨番茄红素对大气细颗粒物(PM_(2.5))所致大鼠肺氧化损伤的保护作用。方法:选用7周龄雄性Sprague-Dawley大鼠60只,随机分为正常对照组、PM_(2.5)模型组、参考对照组(维生素E剂量组,7.5 mg/kg)和番茄红素低剂量(5 mg/kg)、中剂量(15 mg/kg)、高剂量(30 mg/kg) 3组,每组10只。除对照组外,其余各组小鼠均气管内吸入PM_(2.5)混悬液(相当于7.5 mg/kg),每周中毒3次,每次间隔24小时。维生素E干预组每日灌胃色拉油中加入维生素E,对照组给予等量生理盐水。从暴露第一天起,每天灌胃给予番茄红素,持续4周。番茄红素组给予溶解在色拉油中的番茄红素,对照组和模型组给予等量色拉油。4周后全部处死。制作肺病理切片,收集血清和肺组织,均质,离心,收集上清。采用紫外可见分光光度法测定血清谷胱甘肽过氧化物酶(GSH- px)、谷胱甘肽(GSH)、超氧化物歧化酶(SOD)、总抗氧化能力(T-AOC)、丙二醛(MDA)、谷胱甘肽s -转移酶(GST)、过氧化氢酶(CAT)、羟基自由基(OH)、一氧化氮(NO)水平。采用酶联免疫吸附试验(ELISA)检测肿瘤坏死因子-α(TNF-α)、白细胞介素-6(IL-6)和8-羟基-2-脱氧鸟苷(8-OHdG)水平。观察肺组织病理学。结果:与正常对照组相比,有显著差异在谷胱甘肽的含量((9.47±1.37)毫克/克和(11.10±3.82)毫克/ g), SOD (U /毫克(9.43±2.41)和(13.82±4.64)U /毫克),猫(U /毫克(5.35±1.88)和(9.54±3.06)U /毫克),8-OHdG((5.52±1.66)μg / g和(4.76±1.01)μg / g)血清,以及谷胱甘肽((2.19±0.29)毫克/克和(3.18±0.49)毫克/ g), SOD (U /毫克(23.98±4.20)和(31.95±5.08)U /毫克),猫(U /毫克(5.85±1.95)和(3.57±1.96)U /毫克),氧化酶((49.15±7.01)毫克/克和(68.46±11.15)毫克/ g),哦·(U /毫克(74.02±12.84)和(51.03±14.85)U /毫克),肿瘤坏死因子-α((5.57±0.72)ng / g和(7.83±1.60)ng / g), il - 6((2.68±0.39)μg / g和(3.82±1.35)μg / g)肺组织匀浆中PM_(2.5)组(术中,0.05)。这表明身体受到了氧化损伤。相比PM_(2.5)组,谷胱甘肽的含量有显著差异((10.57±2.88)毫克/克和(9.47±1.37)毫克/ g), SOD (U /毫克(13.51±2.95)和(9.43±2.41)U /毫克),8-OHdG((4.38±0.26)μg / g和(5.52±1.66)μg / g)在血清谷胱甘肽((2.72±0.49)毫克/克和(2.19±0.29)毫克/ g),氧化酶((63.46±17.03)毫克/ g和(49.15±7.01)),猫(U /毫克(3.72±1.28)和(5.85±1.95)U /毫克),哦·(U /毫克(65.73±14.88)和(74.02±12.84)U /毫克),没有((3.83±1.60)μ摩尔/毫克和(2.48±1.49)μ摩尔/毫克),肿瘤坏死因子-α((7.49±1.28)ng / g和(5.57±0.72)ng / g),高剂量番茄红素组肺组织匀浆中IL-6含量((3.77±1.35)μg vs(2.68±0.39)μg/g) (p < 0.05);谷胱甘肽的含量((10.57±2.88)毫克/克和(9.43±2.41)毫克/ g),猫(U /毫克(10.61±4.41)和(5.35±1.88)毫克/克)在血清和谷胱甘肽((2.77±0.75)毫克/克和(2.19±0.29)毫克/ g), SOD (U /毫克(30.88±9.65)和(23.98±4.20)U /毫克),猫(U /毫克(4.52±1.30)和(5.85±1.95)U /毫克),肿瘤坏死因子-α((7.37±2.50)ng / g和(5.57±0.72)ng / g), il - 6((3.80±1.36)μg / g和(2.68±0.39)μg / g)在中等剂量组肺组织匀浆(术中,0.01)。维生素E组血清GSH((10.64±2.71)mg/g vs(9.47±1.37)mg/g)、SOD((13.51±2.95)U/mg vs(9.43±2.41)U/mg)、OH·((67.29±16.11)U/mg vs(74.02±12.84)U/mg)含量差异有统计学意义(P<0.05)。PM_(2.5)组肺泡结构破坏,肺泡间隔增厚,肺间质水肿,炎性浸润。番茄红素高剂量干预组肺泡结构完整,细支气管管腔内外有少量中性粒细胞浸润,炎症细胞聚集程度低于PM_(2.5)组,血管轻度扩张充血,肺间质轻度增宽,番茄红素中、低剂量干预组更明显。维生素E组的表现与番茄红素中剂量干预组相似。提示番茄红素对肺组织完整性有保护作用。结论:番茄红素对PM_(2.5)诱导的氧化性肺损伤具有保护作用,可能是通过增强抗氧化酶活性,减少自由基诱导的氧化损伤,稳定生物膜。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
8734
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信