{"title":"Dual-Polymer Carboxymethyl Cellulose and Poly(Ethylene Oxide)-Based Gels for the Prevention of Postsurgical Adhesions","authors":"Anisha A. DSouza, Mansoor M. Amiji","doi":"10.1002/jbm.a.37852","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Postsurgical adhesions are a common complication associated with surgical procedures; they not only impact the patient's well-being but also impose a financial burden due to medical expenses required for reoperative surgeries or adhesiolysis. Adhesions can range from a filmy, fibrinous, or fibrous vascular band to a cohesive attachment, and they can form in diverse anatomical locations such as the peritoneum, pericardium, endometrium, tendons, synovium, and epidural and pleural spaces. Numerous strategies have been explored to minimize the occurrence of postsurgical adhesions. These strategies include surgical approaches, adhesiolysis, antiadhesive agents, and mechanical barriers which have demonstrated the most promise in terms of efficacy and breadth of indications. In this review, we discuss the use of physical/mechanical barriers for adhesion prevention and outline the most commonly used, commercially available barriers. We then focus on a synthetic, dual-polymer gel composed of carboxymethyl cellulose (CMC) and poly(ethylene oxide) [PEO], which, unlike the more commonly used single-polymer hydrogels, has demonstrated higher efficacy across a greater range of indications and surgical procedures. We review the formulation, mechanical properties, and mechanisms of action of the CMC + PEO dual-polymer gel and summarize findings from clinical studies that have assessed the efficacy of CMC + PEO gels in multiple surgical settings in clinics across the world. In conclusion, the CMC + PEO dual-polymer gel represents an approach to preventing postsurgical adhesions that has been commonly used over the last 20 years and could therefore serve as a foundation for research into improving postsurgical outcomes as well as a drug delivery device to expand the use of gels in surgical settings.</p>\n </div>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"113 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part A","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.37852","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Postsurgical adhesions are a common complication associated with surgical procedures; they not only impact the patient's well-being but also impose a financial burden due to medical expenses required for reoperative surgeries or adhesiolysis. Adhesions can range from a filmy, fibrinous, or fibrous vascular band to a cohesive attachment, and they can form in diverse anatomical locations such as the peritoneum, pericardium, endometrium, tendons, synovium, and epidural and pleural spaces. Numerous strategies have been explored to minimize the occurrence of postsurgical adhesions. These strategies include surgical approaches, adhesiolysis, antiadhesive agents, and mechanical barriers which have demonstrated the most promise in terms of efficacy and breadth of indications. In this review, we discuss the use of physical/mechanical barriers for adhesion prevention and outline the most commonly used, commercially available barriers. We then focus on a synthetic, dual-polymer gel composed of carboxymethyl cellulose (CMC) and poly(ethylene oxide) [PEO], which, unlike the more commonly used single-polymer hydrogels, has demonstrated higher efficacy across a greater range of indications and surgical procedures. We review the formulation, mechanical properties, and mechanisms of action of the CMC + PEO dual-polymer gel and summarize findings from clinical studies that have assessed the efficacy of CMC + PEO gels in multiple surgical settings in clinics across the world. In conclusion, the CMC + PEO dual-polymer gel represents an approach to preventing postsurgical adhesions that has been commonly used over the last 20 years and could therefore serve as a foundation for research into improving postsurgical outcomes as well as a drug delivery device to expand the use of gels in surgical settings.
期刊介绍:
The Journal of Biomedical Materials Research Part A is an international, interdisciplinary, English-language publication of original contributions concerning studies of the preparation, performance, and evaluation of biomaterials; the chemical, physical, toxicological, and mechanical behavior of materials in physiological environments; and the response of blood and tissues to biomaterials. The Journal publishes peer-reviewed articles on all relevant biomaterial topics including the science and technology of alloys,polymers, ceramics, and reprocessed animal and human tissues in surgery,dentistry, artificial organs, and other medical devices. The Journal also publishes articles in interdisciplinary areas such as tissue engineering and controlled release technology where biomaterials play a significant role in the performance of the medical device.
The Journal of Biomedical Materials Research is the official journal of the Society for Biomaterials (USA), the Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials.
Articles are welcomed from all scientists. Membership in the Society for Biomaterials is not a prerequisite for submission.