Ayşenur Yeşilyurt, Gopiraman Mayakrishnan, Uğur Parın, Ick Soo Kim, Fatma Nur Parın, Azeem Ullah
{"title":"Design and Characterization of Polyvinyl Alcohol/Kappa-Carrageenan Pickering Emulsion Biocomposite Films for Potential Wound Care Applications","authors":"Ayşenur Yeşilyurt, Gopiraman Mayakrishnan, Uğur Parın, Ick Soo Kim, Fatma Nur Parın, Azeem Ullah","doi":"10.1002/jbm.a.37850","DOIUrl":null,"url":null,"abstract":"<p>This study aimed to develop polyvinyl alcohol (PVA) and kappa-carrageenan (κCA) biocomposite films using a Pickering emulsion technique for wound care applications. Juniper essential oil and modified sepiolite were incorporated to enhance functionality, with films prepared via solvent casting and characterized for structural, thermal, and mechanical properties. The PCOS-2 film exhibited the highest mechanical performance, with Young's modulus of 6.25 ± 1.3 MPa, tensile strength of 5.65 ± 1.7 MPa, and elongation at break of 608.96% ± 72.8%. Antibacterial assays showed inhibition zones of 9 and 10 mm against <i>Staphylococcus aureus</i> and <i>Escherichia coli</i>, respectively, for the PCOS-2 film, while antioxidant activity reached 63% DPPH radical scavenging after 12 h. Additionally, porosity and hydrophilicity were enhanced, as indicated by contact angles of 55° for the control film and 71.2° for PCOS-2. These results underscore the potential of PVA/κCA biocomposite films as sustainable and bioactive wound dressings, combining mechanical resilience, bioactivity, and environmental compatibility, with future efforts focused on optimizing antibacterial efficacy against gram-negative bacteria and clinical validation.</p>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"113 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbm.a.37850","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part A","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.37850","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study aimed to develop polyvinyl alcohol (PVA) and kappa-carrageenan (κCA) biocomposite films using a Pickering emulsion technique for wound care applications. Juniper essential oil and modified sepiolite were incorporated to enhance functionality, with films prepared via solvent casting and characterized for structural, thermal, and mechanical properties. The PCOS-2 film exhibited the highest mechanical performance, with Young's modulus of 6.25 ± 1.3 MPa, tensile strength of 5.65 ± 1.7 MPa, and elongation at break of 608.96% ± 72.8%. Antibacterial assays showed inhibition zones of 9 and 10 mm against Staphylococcus aureus and Escherichia coli, respectively, for the PCOS-2 film, while antioxidant activity reached 63% DPPH radical scavenging after 12 h. Additionally, porosity and hydrophilicity were enhanced, as indicated by contact angles of 55° for the control film and 71.2° for PCOS-2. These results underscore the potential of PVA/κCA biocomposite films as sustainable and bioactive wound dressings, combining mechanical resilience, bioactivity, and environmental compatibility, with future efforts focused on optimizing antibacterial efficacy against gram-negative bacteria and clinical validation.
期刊介绍:
The Journal of Biomedical Materials Research Part A is an international, interdisciplinary, English-language publication of original contributions concerning studies of the preparation, performance, and evaluation of biomaterials; the chemical, physical, toxicological, and mechanical behavior of materials in physiological environments; and the response of blood and tissues to biomaterials. The Journal publishes peer-reviewed articles on all relevant biomaterial topics including the science and technology of alloys,polymers, ceramics, and reprocessed animal and human tissues in surgery,dentistry, artificial organs, and other medical devices. The Journal also publishes articles in interdisciplinary areas such as tissue engineering and controlled release technology where biomaterials play a significant role in the performance of the medical device.
The Journal of Biomedical Materials Research is the official journal of the Society for Biomaterials (USA), the Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials.
Articles are welcomed from all scientists. Membership in the Society for Biomaterials is not a prerequisite for submission.