A deep fusion-based vision transformer for breast cancer classification

IF 2.8 Q3 ENGINEERING, BIOMEDICAL
Ahsan Fiaz, Basit Raza, Muhammad Faheem, Aadil Raza
{"title":"A deep fusion-based vision transformer for breast cancer classification","authors":"Ahsan Fiaz,&nbsp;Basit Raza,&nbsp;Muhammad Faheem,&nbsp;Aadil Raza","doi":"10.1049/htl2.12093","DOIUrl":null,"url":null,"abstract":"<p>Breast cancer is one of the most common causes of death in women in the modern world. Cancerous tissue detection in histopathological images relies on complex features related to tissue structure and staining properties. Convolutional neural network (CNN) models like ResNet50, Inception-V1, and VGG-16, while useful in many applications, cannot capture the patterns of cell layers and staining properties. Most previous approaches, such as stain normalization and instance-based vision transformers, either miss important features or do not process the whole image effectively. Therefore, a deep fusion-based vision Transformer model (DFViT) that combines CNNs and transformers for better feature extraction is proposed. DFViT captures local and global patterns more effectively by fusing RGB and stain-normalized images. Trained and tested on several datasets, such as BreakHis, breast cancer histology (BACH), and UCSC cancer genomics (UC), the results demonstrate outstanding accuracy, F1 score, precision, and recall, setting a new milestone in histopathological image analysis for diagnosing breast cancer.</p>","PeriodicalId":37474,"journal":{"name":"Healthcare Technology Letters","volume":"11 6","pages":"471-484"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11665795/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/htl2.12093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Breast cancer is one of the most common causes of death in women in the modern world. Cancerous tissue detection in histopathological images relies on complex features related to tissue structure and staining properties. Convolutional neural network (CNN) models like ResNet50, Inception-V1, and VGG-16, while useful in many applications, cannot capture the patterns of cell layers and staining properties. Most previous approaches, such as stain normalization and instance-based vision transformers, either miss important features or do not process the whole image effectively. Therefore, a deep fusion-based vision Transformer model (DFViT) that combines CNNs and transformers for better feature extraction is proposed. DFViT captures local and global patterns more effectively by fusing RGB and stain-normalized images. Trained and tested on several datasets, such as BreakHis, breast cancer histology (BACH), and UCSC cancer genomics (UC), the results demonstrate outstanding accuracy, F1 score, precision, and recall, setting a new milestone in histopathological image analysis for diagnosing breast cancer.

Abstract Image

一种基于深度融合的乳腺癌分类视觉变换器。
乳腺癌是现代世界妇女最常见的死亡原因之一。组织病理学图像中的癌组织检测依赖于与组织结构和染色特性相关的复杂特征。卷积神经网络(CNN)模型,如ResNet50、Inception-V1和VGG-16,虽然在许多应用中很有用,但不能捕获细胞层的模式和染色特性。大多数先前的方法,如染色归一化和基于实例的视觉变换,要么错过了重要的特征,要么不能有效地处理整个图像。为此,提出了一种基于深度融合的视觉变压器模型(DFViT),该模型将cnn和变压器相结合,可以更好地提取特征。DFViT通过融合RGB和染色归一化图像更有效地捕获局部和全局模式。在BreakHis、乳腺癌组织学(BACH)和UCSC癌症基因组学(UC)等多个数据集上进行训练和测试,结果显示出出色的准确性、F1评分、精密度和召回率,为乳腺癌诊断的组织病理学图像分析树立了新的里程碑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Healthcare Technology Letters
Healthcare Technology Letters Health Professions-Health Information Management
CiteScore
6.10
自引率
4.80%
发文量
12
审稿时长
22 weeks
期刊介绍: Healthcare Technology Letters aims to bring together an audience of biomedical and electrical engineers, physical and computer scientists, and mathematicians to enable the exchange of the latest ideas and advances through rapid online publication of original healthcare technology research. Major themes of the journal include (but are not limited to): Major technological/methodological areas: Biomedical signal processing Biomedical imaging and image processing Bioinstrumentation (sensors, wearable technologies, etc) Biomedical informatics Major application areas: Cardiovascular and respiratory systems engineering Neural engineering, neuromuscular systems Rehabilitation engineering Bio-robotics, surgical planning and biomechanics Therapeutic and diagnostic systems, devices and technologies Clinical engineering Healthcare information systems, telemedicine, mHealth.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信