Ahsan Fiaz, Basit Raza, Muhammad Faheem, Aadil Raza
{"title":"A deep fusion-based vision transformer for breast cancer classification","authors":"Ahsan Fiaz, Basit Raza, Muhammad Faheem, Aadil Raza","doi":"10.1049/htl2.12093","DOIUrl":null,"url":null,"abstract":"<p>Breast cancer is one of the most common causes of death in women in the modern world. Cancerous tissue detection in histopathological images relies on complex features related to tissue structure and staining properties. Convolutional neural network (CNN) models like ResNet50, Inception-V1, and VGG-16, while useful in many applications, cannot capture the patterns of cell layers and staining properties. Most previous approaches, such as stain normalization and instance-based vision transformers, either miss important features or do not process the whole image effectively. Therefore, a deep fusion-based vision Transformer model (DFViT) that combines CNNs and transformers for better feature extraction is proposed. DFViT captures local and global patterns more effectively by fusing RGB and stain-normalized images. Trained and tested on several datasets, such as BreakHis, breast cancer histology (BACH), and UCSC cancer genomics (UC), the results demonstrate outstanding accuracy, F1 score, precision, and recall, setting a new milestone in histopathological image analysis for diagnosing breast cancer.</p>","PeriodicalId":37474,"journal":{"name":"Healthcare Technology Letters","volume":"11 6","pages":"471-484"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11665795/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/htl2.12093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Breast cancer is one of the most common causes of death in women in the modern world. Cancerous tissue detection in histopathological images relies on complex features related to tissue structure and staining properties. Convolutional neural network (CNN) models like ResNet50, Inception-V1, and VGG-16, while useful in many applications, cannot capture the patterns of cell layers and staining properties. Most previous approaches, such as stain normalization and instance-based vision transformers, either miss important features or do not process the whole image effectively. Therefore, a deep fusion-based vision Transformer model (DFViT) that combines CNNs and transformers for better feature extraction is proposed. DFViT captures local and global patterns more effectively by fusing RGB and stain-normalized images. Trained and tested on several datasets, such as BreakHis, breast cancer histology (BACH), and UCSC cancer genomics (UC), the results demonstrate outstanding accuracy, F1 score, precision, and recall, setting a new milestone in histopathological image analysis for diagnosing breast cancer.
期刊介绍:
Healthcare Technology Letters aims to bring together an audience of biomedical and electrical engineers, physical and computer scientists, and mathematicians to enable the exchange of the latest ideas and advances through rapid online publication of original healthcare technology research. Major themes of the journal include (but are not limited to): Major technological/methodological areas: Biomedical signal processing Biomedical imaging and image processing Bioinstrumentation (sensors, wearable technologies, etc) Biomedical informatics Major application areas: Cardiovascular and respiratory systems engineering Neural engineering, neuromuscular systems Rehabilitation engineering Bio-robotics, surgical planning and biomechanics Therapeutic and diagnostic systems, devices and technologies Clinical engineering Healthcare information systems, telemedicine, mHealth.