Arash Harirpoush, George Rakovich, Marta Kersten-Oertel, Yiming Xiao
{"title":"Virtual reality-based preoperative planning for optimized trocar placement in thoracic surgery: A preliminary study","authors":"Arash Harirpoush, George Rakovich, Marta Kersten-Oertel, Yiming Xiao","doi":"10.1049/htl2.12114","DOIUrl":null,"url":null,"abstract":"<p>Video-assisted thoracic surgery (VATS) is a minimally invasive approach for treating early-stage non-small-cell lung cancer. Optimal trocar placement during VATS ensures comprehensive access to the thoracic cavity, provides a panoramic endoscopic view, and prevents instrument crowding. While established principles such as the Baseball Diamond Principle (BDP) and Triangle Target Principle (TTP) exist, surgeons mainly rely on experience and patient-specific anatomy for trocar placement, potentially leading to sub-optimal surgical plans that increase operative time and fatigue. To address this, the authors present the first virtual reality (VR)-based pre-operative planning tool with tailored data visualization and interaction designs for efficient and optimal VATS trocar placement, following the established surgical principles and consultation with an experienced surgeon. In the preliminary study, the system's application in right upper lung lobectomy is demonstrated, a common thoracic procedure typically using three trocars. A preliminary user study of the system indicates it is efficient, robust, and user-friendly for planning optimal trocar placement, with a great promise for clinical application while offering potentially valuable insights for the development of other surgical VR systems.</p>","PeriodicalId":37474,"journal":{"name":"Healthcare Technology Letters","volume":"11 6","pages":"418-426"},"PeriodicalIF":2.8000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11665775/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/htl2.12114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Video-assisted thoracic surgery (VATS) is a minimally invasive approach for treating early-stage non-small-cell lung cancer. Optimal trocar placement during VATS ensures comprehensive access to the thoracic cavity, provides a panoramic endoscopic view, and prevents instrument crowding. While established principles such as the Baseball Diamond Principle (BDP) and Triangle Target Principle (TTP) exist, surgeons mainly rely on experience and patient-specific anatomy for trocar placement, potentially leading to sub-optimal surgical plans that increase operative time and fatigue. To address this, the authors present the first virtual reality (VR)-based pre-operative planning tool with tailored data visualization and interaction designs for efficient and optimal VATS trocar placement, following the established surgical principles and consultation with an experienced surgeon. In the preliminary study, the system's application in right upper lung lobectomy is demonstrated, a common thoracic procedure typically using three trocars. A preliminary user study of the system indicates it is efficient, robust, and user-friendly for planning optimal trocar placement, with a great promise for clinical application while offering potentially valuable insights for the development of other surgical VR systems.
期刊介绍:
Healthcare Technology Letters aims to bring together an audience of biomedical and electrical engineers, physical and computer scientists, and mathematicians to enable the exchange of the latest ideas and advances through rapid online publication of original healthcare technology research. Major themes of the journal include (but are not limited to): Major technological/methodological areas: Biomedical signal processing Biomedical imaging and image processing Bioinstrumentation (sensors, wearable technologies, etc) Biomedical informatics Major application areas: Cardiovascular and respiratory systems engineering Neural engineering, neuromuscular systems Rehabilitation engineering Bio-robotics, surgical planning and biomechanics Therapeutic and diagnostic systems, devices and technologies Clinical engineering Healthcare information systems, telemedicine, mHealth.