Occlusion-robust markerless surgical instrument pose estimation

IF 2.8 Q3 ENGINEERING, BIOMEDICAL
Haozheng Xu, Stamatia Giannarou
{"title":"Occlusion-robust markerless surgical instrument pose estimation","authors":"Haozheng Xu,&nbsp;Stamatia Giannarou","doi":"10.1049/htl2.12100","DOIUrl":null,"url":null,"abstract":"<p>The estimation of the pose of surgical instruments is important in Robot-assisted Minimally Invasive Surgery (RMIS) to assist surgical navigation and enable autonomous robotic task execution. The performance of current instrument pose estimation methods deteriorates significantly in the presence of partial tool visibility, occlusions, and changes in the surgical scene. In this work, a vision-based framework is proposed for markerless estimation of the 6DoF pose of surgical instruments. To deal with partial instrument visibility, a keypoint object representation is used and stable and accurate instrument poses are computed using a PnP solver. To boost the learning process of the model under occlusion, a new mask-based data augmentation approach has been proposed. To validate the model, a dataset for instrument pose estimation with highly accurate ground truth data has been generated using different surgical robotic instruments. The proposed network can achieve submillimeter accuracy and the experimental results verify its generalisability to different shapes of occlusion.</p>","PeriodicalId":37474,"journal":{"name":"Healthcare Technology Letters","volume":"11 6","pages":"327-335"},"PeriodicalIF":2.8000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11665797/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/htl2.12100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The estimation of the pose of surgical instruments is important in Robot-assisted Minimally Invasive Surgery (RMIS) to assist surgical navigation and enable autonomous robotic task execution. The performance of current instrument pose estimation methods deteriorates significantly in the presence of partial tool visibility, occlusions, and changes in the surgical scene. In this work, a vision-based framework is proposed for markerless estimation of the 6DoF pose of surgical instruments. To deal with partial instrument visibility, a keypoint object representation is used and stable and accurate instrument poses are computed using a PnP solver. To boost the learning process of the model under occlusion, a new mask-based data augmentation approach has been proposed. To validate the model, a dataset for instrument pose estimation with highly accurate ground truth data has been generated using different surgical robotic instruments. The proposed network can achieve submillimeter accuracy and the experimental results verify its generalisability to different shapes of occlusion.

Abstract Image

闭塞鲁棒无标记手术器械位姿估计。
在机器人辅助微创手术(RMIS)中,手术器械的姿态估计对于辅助手术导航和实现机器人自主任务执行非常重要。当前仪器位姿估计方法的性能在存在部分工具可见性,闭塞性和手术场景变化时显着恶化。在这项工作中,提出了一个基于视觉的框架,用于手术器械六自由度位姿的无标记估计。为了处理仪器的部分可见性,使用关键点对象表示,并使用PnP求解器计算稳定准确的仪器姿态。为了提高遮挡下模型的学习速度,提出了一种新的基于掩模的数据增强方法。为了验证该模型,使用不同的手术机器人器械生成了具有高精度地面真值数据的器械姿态估计数据集。所提出的网络可以达到亚毫米精度,实验结果验证了其对不同形状遮挡的通用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Healthcare Technology Letters
Healthcare Technology Letters Health Professions-Health Information Management
CiteScore
6.10
自引率
4.80%
发文量
12
审稿时长
22 weeks
期刊介绍: Healthcare Technology Letters aims to bring together an audience of biomedical and electrical engineers, physical and computer scientists, and mathematicians to enable the exchange of the latest ideas and advances through rapid online publication of original healthcare technology research. Major themes of the journal include (but are not limited to): Major technological/methodological areas: Biomedical signal processing Biomedical imaging and image processing Bioinstrumentation (sensors, wearable technologies, etc) Biomedical informatics Major application areas: Cardiovascular and respiratory systems engineering Neural engineering, neuromuscular systems Rehabilitation engineering Bio-robotics, surgical planning and biomechanics Therapeutic and diagnostic systems, devices and technologies Clinical engineering Healthcare information systems, telemedicine, mHealth.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信