{"title":"Occlusion-robust markerless surgical instrument pose estimation","authors":"Haozheng Xu, Stamatia Giannarou","doi":"10.1049/htl2.12100","DOIUrl":null,"url":null,"abstract":"<p>The estimation of the pose of surgical instruments is important in Robot-assisted Minimally Invasive Surgery (RMIS) to assist surgical navigation and enable autonomous robotic task execution. The performance of current instrument pose estimation methods deteriorates significantly in the presence of partial tool visibility, occlusions, and changes in the surgical scene. In this work, a vision-based framework is proposed for markerless estimation of the 6DoF pose of surgical instruments. To deal with partial instrument visibility, a keypoint object representation is used and stable and accurate instrument poses are computed using a PnP solver. To boost the learning process of the model under occlusion, a new mask-based data augmentation approach has been proposed. To validate the model, a dataset for instrument pose estimation with highly accurate ground truth data has been generated using different surgical robotic instruments. The proposed network can achieve submillimeter accuracy and the experimental results verify its generalisability to different shapes of occlusion.</p>","PeriodicalId":37474,"journal":{"name":"Healthcare Technology Letters","volume":"11 6","pages":"327-335"},"PeriodicalIF":2.8000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11665797/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/htl2.12100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The estimation of the pose of surgical instruments is important in Robot-assisted Minimally Invasive Surgery (RMIS) to assist surgical navigation and enable autonomous robotic task execution. The performance of current instrument pose estimation methods deteriorates significantly in the presence of partial tool visibility, occlusions, and changes in the surgical scene. In this work, a vision-based framework is proposed for markerless estimation of the 6DoF pose of surgical instruments. To deal with partial instrument visibility, a keypoint object representation is used and stable and accurate instrument poses are computed using a PnP solver. To boost the learning process of the model under occlusion, a new mask-based data augmentation approach has been proposed. To validate the model, a dataset for instrument pose estimation with highly accurate ground truth data has been generated using different surgical robotic instruments. The proposed network can achieve submillimeter accuracy and the experimental results verify its generalisability to different shapes of occlusion.
期刊介绍:
Healthcare Technology Letters aims to bring together an audience of biomedical and electrical engineers, physical and computer scientists, and mathematicians to enable the exchange of the latest ideas and advances through rapid online publication of original healthcare technology research. Major themes of the journal include (but are not limited to): Major technological/methodological areas: Biomedical signal processing Biomedical imaging and image processing Bioinstrumentation (sensors, wearable technologies, etc) Biomedical informatics Major application areas: Cardiovascular and respiratory systems engineering Neural engineering, neuromuscular systems Rehabilitation engineering Bio-robotics, surgical planning and biomechanics Therapeutic and diagnostic systems, devices and technologies Clinical engineering Healthcare information systems, telemedicine, mHealth.