PitRSDNet: Predicting intra-operative remaining surgery duration in endoscopic pituitary surgery

IF 2.8 Q3 ENGINEERING, BIOMEDICAL
Anjana Wijekoon, Adrito Das, Roxana R. Herrera, Danyal Z. Khan, John Hanrahan, Eleanor Carter, Valpuri Luoma, Danail Stoyanov, Hani J. Marcus, Sophia Bano
{"title":"PitRSDNet: Predicting intra-operative remaining surgery duration in endoscopic pituitary surgery","authors":"Anjana Wijekoon,&nbsp;Adrito Das,&nbsp;Roxana R. Herrera,&nbsp;Danyal Z. Khan,&nbsp;John Hanrahan,&nbsp;Eleanor Carter,&nbsp;Valpuri Luoma,&nbsp;Danail Stoyanov,&nbsp;Hani J. Marcus,&nbsp;Sophia Bano","doi":"10.1049/htl2.12099","DOIUrl":null,"url":null,"abstract":"<p>Accurate intra-operative Remaining Surgery Duration (RSD) predictions allow for anaesthetists to more accurately decide when to administer anaesthetic agents and drugs, as well as to notify hospital staff to send in the next patient. Therefore, RSD plays an important role in improved patient care and minimising surgical theatre costs via efficient scheduling. In endoscopic pituitary surgery, it is uniquely challenging due to variable workflow sequences with a selection of optional steps contributing to high variability in surgery duration. This article presents PitRSDNet for predicting RSD during pituitary surgery, a spatio-temporal neural network model that learns from historical data focusing on workflow sequences. PitRSDNet integrates workflow knowledge into RSD prediction in two forms: (1) multi-task learning for concurrently predicting step and RSD; and (2) incorporating prior steps as context in temporal learning and inference. PitRSDNet is trained and evaluated on a new endoscopic pituitary surgery dataset with 88 videos to show competitive performance improvements over previous statistical and machine learning methods. The findings also highlight how PitRSDNet improves RSD precision on outlier cases utilising the knowledge of prior steps.</p>","PeriodicalId":37474,"journal":{"name":"Healthcare Technology Letters","volume":"11 6","pages":"318-326"},"PeriodicalIF":2.8000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11665798/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/htl2.12099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate intra-operative Remaining Surgery Duration (RSD) predictions allow for anaesthetists to more accurately decide when to administer anaesthetic agents and drugs, as well as to notify hospital staff to send in the next patient. Therefore, RSD plays an important role in improved patient care and minimising surgical theatre costs via efficient scheduling. In endoscopic pituitary surgery, it is uniquely challenging due to variable workflow sequences with a selection of optional steps contributing to high variability in surgery duration. This article presents PitRSDNet for predicting RSD during pituitary surgery, a spatio-temporal neural network model that learns from historical data focusing on workflow sequences. PitRSDNet integrates workflow knowledge into RSD prediction in two forms: (1) multi-task learning for concurrently predicting step and RSD; and (2) incorporating prior steps as context in temporal learning and inference. PitRSDNet is trained and evaluated on a new endoscopic pituitary surgery dataset with 88 videos to show competitive performance improvements over previous statistical and machine learning methods. The findings also highlight how PitRSDNet improves RSD precision on outlier cases utilising the knowledge of prior steps.

Abstract Image

PitRSDNet:预测内镜下垂体手术术中剩余手术时间。
准确的术中剩余手术时间(RSD)预测使麻醉师能够更准确地决定何时使用麻醉剂和药物,并通知医院工作人员将下一个患者送进来。因此,RSD通过有效的调度在改善患者护理和最小化手术室成本方面发挥着重要作用。在垂体内窥镜手术中,由于可变的工作流程序列和可选步骤的选择,导致手术时间的高度可变性,因此具有独特的挑战性。本文介绍了用于预测垂体手术期间RSD的PitRSDNet,这是一种基于工作流序列的历史数据学习的时空神经网络模型。PitRSDNet通过两种形式将工作流知识集成到RSD预测中:(1)多任务学习,同时预测步骤和RSD;(2)将先前的步骤作为时间学习和推理的背景。PitRSDNet在一个新的垂体内窥镜手术数据集上进行了训练和评估,其中包含88个视频,以显示比以前的统计和机器学习方法有竞争力的性能改进。研究结果还强调了PitRSDNet如何利用先前步骤的知识提高异常情况下的RSD精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Healthcare Technology Letters
Healthcare Technology Letters Health Professions-Health Information Management
CiteScore
6.10
自引率
4.80%
发文量
12
审稿时长
22 weeks
期刊介绍: Healthcare Technology Letters aims to bring together an audience of biomedical and electrical engineers, physical and computer scientists, and mathematicians to enable the exchange of the latest ideas and advances through rapid online publication of original healthcare technology research. Major themes of the journal include (but are not limited to): Major technological/methodological areas: Biomedical signal processing Biomedical imaging and image processing Bioinstrumentation (sensors, wearable technologies, etc) Biomedical informatics Major application areas: Cardiovascular and respiratory systems engineering Neural engineering, neuromuscular systems Rehabilitation engineering Bio-robotics, surgical planning and biomechanics Therapeutic and diagnostic systems, devices and technologies Clinical engineering Healthcare information systems, telemedicine, mHealth.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信