A neurodegenerative cellular stress response linked to dark microglia and toxic lipid secretion.

IF 14.7 1区 医学 Q1 NEUROSCIENCES
Anna Flury, Leen Aljayousi, Hye-Jin Park, Mohammadparsa Khakpour, Jack Mechler, Siaresh Aziz, Jackson D McGrath, Pragney Deme, Colby Sandberg, Fernando González Ibáñez, Olivia Braniff, Thi Ngo, Simira Smith, Matthew Velez, Denice Moran Ramirez, Dvir Avnon-Klein, John W Murray, Jia Liu, Martin Parent, Susana Mingote, Norman J Haughey, Sebastian Werneburg, Marie-Ève Tremblay, Pinar Ayata
{"title":"A neurodegenerative cellular stress response linked to dark microglia and toxic lipid secretion.","authors":"Anna Flury, Leen Aljayousi, Hye-Jin Park, Mohammadparsa Khakpour, Jack Mechler, Siaresh Aziz, Jackson D McGrath, Pragney Deme, Colby Sandberg, Fernando González Ibáñez, Olivia Braniff, Thi Ngo, Simira Smith, Matthew Velez, Denice Moran Ramirez, Dvir Avnon-Klein, John W Murray, Jia Liu, Martin Parent, Susana Mingote, Norman J Haughey, Sebastian Werneburg, Marie-Ève Tremblay, Pinar Ayata","doi":"10.1016/j.neuron.2024.11.018","DOIUrl":null,"url":null,"abstract":"<p><p>The brain's primary immune cells, microglia, are a leading causal cell type in Alzheimer's disease (AD). Yet, the mechanisms by which microglia can drive neurodegeneration remain unresolved. Here, we discover that a conserved stress signaling pathway, the integrated stress response (ISR), characterizes a microglia subset with neurodegenerative outcomes. Autonomous activation of ISR in microglia is sufficient to induce early features of the ultrastructurally distinct \"dark microglia\" linked to pathological synapse loss. In AD models, microglial ISR activation exacerbates neurodegenerative pathologies and synapse loss while its inhibition ameliorates them. Mechanistically, we present evidence that ISR activation promotes the secretion of toxic lipids by microglia, impairing neuron homeostasis and survival in vitro. Accordingly, pharmacological inhibition of ISR or lipid synthesis mitigates synapse loss in AD models. Our results demonstrate that microglial ISR activation represents a neurodegenerative phenotype, which may be sustained, at least in part, by the secretion of toxic lipids.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuron","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuron.2024.11.018","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The brain's primary immune cells, microglia, are a leading causal cell type in Alzheimer's disease (AD). Yet, the mechanisms by which microglia can drive neurodegeneration remain unresolved. Here, we discover that a conserved stress signaling pathway, the integrated stress response (ISR), characterizes a microglia subset with neurodegenerative outcomes. Autonomous activation of ISR in microglia is sufficient to induce early features of the ultrastructurally distinct "dark microglia" linked to pathological synapse loss. In AD models, microglial ISR activation exacerbates neurodegenerative pathologies and synapse loss while its inhibition ameliorates them. Mechanistically, we present evidence that ISR activation promotes the secretion of toxic lipids by microglia, impairing neuron homeostasis and survival in vitro. Accordingly, pharmacological inhibition of ISR or lipid synthesis mitigates synapse loss in AD models. Our results demonstrate that microglial ISR activation represents a neurodegenerative phenotype, which may be sustained, at least in part, by the secretion of toxic lipids.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Neuron
Neuron 医学-神经科学
CiteScore
24.50
自引率
3.10%
发文量
382
审稿时长
1 months
期刊介绍: Established as a highly influential journal in neuroscience, Neuron is widely relied upon in the field. The editors adopt interdisciplinary strategies, integrating biophysical, cellular, developmental, and molecular approaches alongside a systems approach to sensory, motor, and higher-order cognitive functions. Serving as a premier intellectual forum, Neuron holds a prominent position in the entire neuroscience community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信