Reprogramming tumor-associated macrophages with lipid nanosystems reduces PDAC tumor burden and liver metastasis.

IF 10.6 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Adrián Palencia-Campos, Laura Ruiz-Cañas, Marcelina Abal-Sanisidro, Juan Carlos López-Gil, Sandra Batres-Ramos, Sofia Mendes Saraiva, Balbino Yagüe, Diego Navarro, Sonia Alcalá, Juan A Rubiolo, Nadège Bidan, Laura Sánchez, Simona Mura, Patrick C Hermann, María de la Fuente, Bruno Sainz
{"title":"Reprogramming tumor-associated macrophages with lipid nanosystems reduces PDAC tumor burden and liver metastasis.","authors":"Adrián Palencia-Campos, Laura Ruiz-Cañas, Marcelina Abal-Sanisidro, Juan Carlos López-Gil, Sandra Batres-Ramos, Sofia Mendes Saraiva, Balbino Yagüe, Diego Navarro, Sonia Alcalá, Juan A Rubiolo, Nadège Bidan, Laura Sánchez, Simona Mura, Patrick C Hermann, María de la Fuente, Bruno Sainz","doi":"10.1186/s12951-024-03010-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Pancreatic ductal adenocarcinoma (PDAC) requires innovative therapeutic strategies to counteract its progression and metastatic potential. Since the majority of patients are diagnosed with advanced metastatic disease, treatment strategies targeting not only the primary tumor but also metastatic lesions are needed. Tumor-Associated Macrophages (TAMs) have emerged as central players, significantly influencing PDAC progression and metastasis. Our objective was to validate an innovative therapeutic strategy involving the reprogramming of TAMs using lipid nanosystems to prevent the formation of a pro-metastatic microenvironment in the liver.</p><p><strong>Results: </strong>In vitro results demonstrate that M2-polarized macrophages lose their M2-phenotype following treatment with lipid nanoemulsions composed of vitamin E and sphingomyelin (VitE:SM), transitioning to an M0/M1 state. Specifically, VitE:SM nanoemulsion treatment decreased the expression of macrophage M2 markers such as Arg1 and Egr2, while M1 markers such as Cd86, Il-1b and Il-12b increased. Additionally, the TGF-βR1 inhibitor Galunisertib (LY2157299) was loaded into VitE:SM nanoemulsions and delivered to C57BL/6 mice orthotopically injected with KPC PDAC tumor cells. Treated mice showed diminished primary tumor growth and reduced TAM infiltration in the liver. Moreover, we observed a decrease in liver metastasis with the nanoemulsion treatment in an intrasplenic model of PDAC liver metastasis. Finally, we validated the translatability of our VitE:SM nanosystem therapy in a human cell-based 3D co-culture model in vivo, underscoring the pivotal role of macrophages in the nanosystem's therapeutic effect in the context of human PDAC metastasis.</p><p><strong>Conclusions: </strong>The demonstrated effectiveness and safety of our nanosystem therapy highlights a promising therapeutic approach for PDAC, showcasing its potential in reprogramming TAMs and mitigating the occurrence of liver metastasis.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"22 1","pages":"795"},"PeriodicalIF":10.6000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11668009/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-024-03010-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Pancreatic ductal adenocarcinoma (PDAC) requires innovative therapeutic strategies to counteract its progression and metastatic potential. Since the majority of patients are diagnosed with advanced metastatic disease, treatment strategies targeting not only the primary tumor but also metastatic lesions are needed. Tumor-Associated Macrophages (TAMs) have emerged as central players, significantly influencing PDAC progression and metastasis. Our objective was to validate an innovative therapeutic strategy involving the reprogramming of TAMs using lipid nanosystems to prevent the formation of a pro-metastatic microenvironment in the liver.

Results: In vitro results demonstrate that M2-polarized macrophages lose their M2-phenotype following treatment with lipid nanoemulsions composed of vitamin E and sphingomyelin (VitE:SM), transitioning to an M0/M1 state. Specifically, VitE:SM nanoemulsion treatment decreased the expression of macrophage M2 markers such as Arg1 and Egr2, while M1 markers such as Cd86, Il-1b and Il-12b increased. Additionally, the TGF-βR1 inhibitor Galunisertib (LY2157299) was loaded into VitE:SM nanoemulsions and delivered to C57BL/6 mice orthotopically injected with KPC PDAC tumor cells. Treated mice showed diminished primary tumor growth and reduced TAM infiltration in the liver. Moreover, we observed a decrease in liver metastasis with the nanoemulsion treatment in an intrasplenic model of PDAC liver metastasis. Finally, we validated the translatability of our VitE:SM nanosystem therapy in a human cell-based 3D co-culture model in vivo, underscoring the pivotal role of macrophages in the nanosystem's therapeutic effect in the context of human PDAC metastasis.

Conclusions: The demonstrated effectiveness and safety of our nanosystem therapy highlights a promising therapeutic approach for PDAC, showcasing its potential in reprogramming TAMs and mitigating the occurrence of liver metastasis.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nanobiotechnology
Journal of Nanobiotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
13.90
自引率
4.90%
发文量
493
审稿时长
16 weeks
期刊介绍: Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信