Alfie Roddan, Tobias Czempiel, Daniel S. Elson, Stamatia Giannarou
{"title":"Calibration-Jitter: Augmentation of hyperspectral data for improved surgical scene segmentation","authors":"Alfie Roddan, Tobias Czempiel, Daniel S. Elson, Stamatia Giannarou","doi":"10.1049/htl2.12102","DOIUrl":null,"url":null,"abstract":"<p>Semantic surgical scene segmentation is crucial for accurately identifying and delineating different tissue types during surgery, enhancing outcomes and reducing complications. Hyperspectral imaging provides detailed information beyond visible color filters, offering an enhanced view of tissue characteristics. Combined with machine learning, it supports critical tumor resection decisions. Traditional augmentations fail to effectively train machine learning models on illumination and sensor sensitivity variations. Learning to handle these variations is crucial to enable models to better generalize, ultimately enhancing their reliability in deployment. In this article, <i>Calibration-Jitter</i> is introduced, a spectral augmentation technique that leverages hyperspectral calibration variations to improve predictive performance. Evaluated on scene segmentation on a neurosurgical dataset, <i>Calibration-Jitter</i> achieved a F1-score of 74.35% with SegFormer, surpassing the previous best of 70.2%. This advancement addresses limitations of traditional augmentations, improving hyperspectral imaging segmentation performance.</p>","PeriodicalId":37474,"journal":{"name":"Healthcare Technology Letters","volume":"11 6","pages":"345-354"},"PeriodicalIF":2.8000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11665780/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/htl2.12102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Semantic surgical scene segmentation is crucial for accurately identifying and delineating different tissue types during surgery, enhancing outcomes and reducing complications. Hyperspectral imaging provides detailed information beyond visible color filters, offering an enhanced view of tissue characteristics. Combined with machine learning, it supports critical tumor resection decisions. Traditional augmentations fail to effectively train machine learning models on illumination and sensor sensitivity variations. Learning to handle these variations is crucial to enable models to better generalize, ultimately enhancing their reliability in deployment. In this article, Calibration-Jitter is introduced, a spectral augmentation technique that leverages hyperspectral calibration variations to improve predictive performance. Evaluated on scene segmentation on a neurosurgical dataset, Calibration-Jitter achieved a F1-score of 74.35% with SegFormer, surpassing the previous best of 70.2%. This advancement addresses limitations of traditional augmentations, improving hyperspectral imaging segmentation performance.
期刊介绍:
Healthcare Technology Letters aims to bring together an audience of biomedical and electrical engineers, physical and computer scientists, and mathematicians to enable the exchange of the latest ideas and advances through rapid online publication of original healthcare technology research. Major themes of the journal include (but are not limited to): Major technological/methodological areas: Biomedical signal processing Biomedical imaging and image processing Bioinstrumentation (sensors, wearable technologies, etc) Biomedical informatics Major application areas: Cardiovascular and respiratory systems engineering Neural engineering, neuromuscular systems Rehabilitation engineering Bio-robotics, surgical planning and biomechanics Therapeutic and diagnostic systems, devices and technologies Clinical engineering Healthcare information systems, telemedicine, mHealth.