A review on comparative analysis of marine and freshwater fish gut microbiomes: insights into environmental impact on gut microbiota.

IF 3.5 3区 生物学 Q2 MICROBIOLOGY
Binoy Kumar Singh, Kushal Thakur, Hishani Kumari, Danish Mahajan, Dixit Sharma, Amit Kumar Sharma, Sunil Kumar, Birbal Singh, Pranay Punj Pankaj, Rakesh Kumar
{"title":"A review on comparative analysis of marine and freshwater fish gut microbiomes: insights into environmental impact on gut microbiota.","authors":"Binoy Kumar Singh, Kushal Thakur, Hishani Kumari, Danish Mahajan, Dixit Sharma, Amit Kumar Sharma, Sunil Kumar, Birbal Singh, Pranay Punj Pankaj, Rakesh Kumar","doi":"10.1093/femsec/fiae169","DOIUrl":null,"url":null,"abstract":"<p><p>The gut microbiota, which includes prokaryotes, archaea, and eukaryotes such as yeasts, some protozoa, and fungi, significantly impacts fish by affecting digestion, metabolism, and the immune system. In this research, we combine various tasks carried out by various bacteria in the gut of fish. This study also examines the gut microbiome composition of marine and freshwater fish, identifying important bacterial species linked to different biological functions. The diversity within fish species highlights the importance of considering nutrition, habitat, and environmental factors in microbiological research on fish. The ever-changing gut microbiome of the fish indicates that microbial communities are specifically adapted to meet the needs of both the host and its environment. This indicates that the fish can adjust to a specific environment with the help of gut microbiota. This important research is crucial for comprehending the complex relationships between fish and their gut bacteria in different aquatic environments. These discoveries have implications for aquaculture practices, fisheries administration, and the broader ecological processes of both freshwater and marine environments. With further progress in this area of study, the knowledge acquired would offer a valuable standpoint to enhance our comprehension of aquatic microbiology and enhance the sustainability and nutrition of fish resources.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11730441/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbiology ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsec/fiae169","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The gut microbiota, which includes prokaryotes, archaea, and eukaryotes such as yeasts, some protozoa, and fungi, significantly impacts fish by affecting digestion, metabolism, and the immune system. In this research, we combine various tasks carried out by various bacteria in the gut of fish. This study also examines the gut microbiome composition of marine and freshwater fish, identifying important bacterial species linked to different biological functions. The diversity within fish species highlights the importance of considering nutrition, habitat, and environmental factors in microbiological research on fish. The ever-changing gut microbiome of the fish indicates that microbial communities are specifically adapted to meet the needs of both the host and its environment. This indicates that the fish can adjust to a specific environment with the help of gut microbiota. This important research is crucial for comprehending the complex relationships between fish and their gut bacteria in different aquatic environments. These discoveries have implications for aquaculture practices, fisheries administration, and the broader ecological processes of both freshwater and marine environments. With further progress in this area of study, the knowledge acquired would offer a valuable standpoint to enhance our comprehension of aquatic microbiology and enhance the sustainability and nutrition of fish resources.

海洋和淡水鱼肠道微生物群的比较分析综述:环境对肠道微生物群的影响。
肠道微生物群包括原核生物、古生菌和真核生物(如酵母菌、某些原生动物和真菌),它们通过影响消化、新陈代谢和免疫系统对鱼类产生重大影响。在这项研究中,我们结合了鱼类肠道中各种细菌执行的各种任务。这项研究还考察了海水鱼和淡水鱼的肠道微生物组组成,确定了与不同生物功能相关的重要细菌物种。鱼类物种内部的多样性凸显了在鱼类微生物研究中考虑营养、栖息地和环境因素的重要性。鱼类不断变化的肠道微生物群表明,微生物群落是专门为满足宿主及其环境的需要而调整的。这表明,鱼类可以在肠道微生物群的帮助下适应特定的环境。这项重要的研究对于理解鱼类与其肠道细菌在不同水生环境中的复杂关系至关重要。这些发现对水产养殖实践、渔业管理以及淡水和海洋环境中更广泛的生态过程都有影响。随着这一研究领域的进一步进展,所获得的知识将为我们提供一个宝贵的视角,以提高我们对水生微生物学的理解,并增强鱼类资源的可持续性和营养。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
FEMS microbiology ecology
FEMS microbiology ecology 生物-微生物学
CiteScore
7.50
自引率
2.40%
发文量
132
审稿时长
3 months
期刊介绍: FEMS Microbiology Ecology aims to ensure efficient publication of high-quality papers that are original and provide a significant contribution to the understanding of microbial ecology. The journal contains Research Articles and MiniReviews on fundamental aspects of the ecology of microorganisms in natural soil, aquatic and atmospheric habitats, including extreme environments, and in artificial or managed environments. Research papers on pure cultures and in the areas of plant pathology and medical, food or veterinary microbiology will be published where they provide valuable generic information on microbial ecology. Papers can deal with culturable and non-culturable forms of any type of microorganism: bacteria, archaea, filamentous fungi, yeasts, protozoa, cyanobacteria, algae or viruses. In addition, the journal will publish Perspectives, Current Opinion and Controversy Articles, Commentaries and Letters to the Editor on topical issues in microbial ecology. - Application of ecological theory to microbial ecology - Interactions and signalling between microorganisms and with plants and animals - Interactions between microorganisms and their physicochemical enviornment - Microbial aspects of biogeochemical cycles and processes - Microbial community ecology - Phylogenetic and functional diversity of microbial communities - Evolutionary biology of microorganisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信