Romain Gougeon, Luis A Buatois, M Gabriela Mángano, Guy M Narbonne, Brittany A Laing, Maximiliano Paz, Nicholas J Minter
{"title":"Environmental and evolutionary controls in animal-sediment interactions at the onset of the Cambrian explosion.","authors":"Romain Gougeon, Luis A Buatois, M Gabriela Mángano, Guy M Narbonne, Brittany A Laing, Maximiliano Paz, Nicholas J Minter","doi":"10.1016/j.cub.2024.11.028","DOIUrl":null,"url":null,"abstract":"<p><p>The Cambrian explosion was a time of groundbreaking ecological shifts related to the establishment of the Phanerozoic biosphere. Trace fossils, which are the products of animals interacting with their substrates, provide a key record of the diversification of the benthos and the evolution of behavioral complexity through this interval. The Chapel Island Formation of Newfoundland in Canada hosts the most extensive trace-fossil record from the latest Ediacaran to Cambrian Age 2, spanning about 20 million years continuously. To elucidate the relative roles of environmental changes as opposed to evolutionary trajectories, we gathered the largest trace-fossil dataset to date and designed fourteen high-resolution time-environment matrices on bioturbation intensity, burrow width and depth, tiering (i.e., the vertical partitioning of trace fossils within the substrate), ichnodiversity, ichnodisparity (i.e., the development of novel architectural designs in ichnotaxa), ecospace utilization (i.e., the development of ecological niches by benthic animals), and other trends related to specific trace-fossil types. Ecosystem engineering by early animals resulted in three stages identified in the Chapel Island Formation that are probably global-an Ediacaran matground ecology, a Fortunian matground/firmground ecology, and a latest Fortunian/Cambrian Age 2 mixground ecology. Time-environment matrices further imply that the lower offshore was the cradle of diversification for animal behavior, which later expanded inshore and led to a novelty evolutionary event, refining our understanding of the early stages of the Cambrian explosion.</p>","PeriodicalId":11359,"journal":{"name":"Current Biology","volume":" ","pages":"249-264.e4"},"PeriodicalIF":8.1000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cub.2024.11.028","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The Cambrian explosion was a time of groundbreaking ecological shifts related to the establishment of the Phanerozoic biosphere. Trace fossils, which are the products of animals interacting with their substrates, provide a key record of the diversification of the benthos and the evolution of behavioral complexity through this interval. The Chapel Island Formation of Newfoundland in Canada hosts the most extensive trace-fossil record from the latest Ediacaran to Cambrian Age 2, spanning about 20 million years continuously. To elucidate the relative roles of environmental changes as opposed to evolutionary trajectories, we gathered the largest trace-fossil dataset to date and designed fourteen high-resolution time-environment matrices on bioturbation intensity, burrow width and depth, tiering (i.e., the vertical partitioning of trace fossils within the substrate), ichnodiversity, ichnodisparity (i.e., the development of novel architectural designs in ichnotaxa), ecospace utilization (i.e., the development of ecological niches by benthic animals), and other trends related to specific trace-fossil types. Ecosystem engineering by early animals resulted in three stages identified in the Chapel Island Formation that are probably global-an Ediacaran matground ecology, a Fortunian matground/firmground ecology, and a latest Fortunian/Cambrian Age 2 mixground ecology. Time-environment matrices further imply that the lower offshore was the cradle of diversification for animal behavior, which later expanded inshore and led to a novelty evolutionary event, refining our understanding of the early stages of the Cambrian explosion.
期刊介绍:
Current Biology is a comprehensive journal that showcases original research in various disciplines of biology. It provides a platform for scientists to disseminate their groundbreaking findings and promotes interdisciplinary communication. The journal publishes articles of general interest, encompassing diverse fields of biology. Moreover, it offers accessible editorial pieces that are specifically designed to enlighten non-specialist readers.