{"title":"Inflammasome regulation by the cell surface ecto-5'-nucleotidase of the oral commensal, Streptococcus oralis.","authors":"Natsuno Nakamura, Hirobumi Morisaki, Momoe Itsumi, Nobuo Okahashi, Haruka Fukamachi, Ayako Sato, Miki Kadena, Mariko Kikuchi, Shohei Matsui, Takahiro Funatsu, Hirotaka Kuwata","doi":"10.1016/j.bbrc.2024.151206","DOIUrl":null,"url":null,"abstract":"<p><p>Streptococcus oralis is a commensal oral bacterium that acts as an opportunistic pathogen, causing systemic diseases, such as infective endocarditis and aspiration pneumonia. However, the specific molecular mechanisms underlying its transition from commensal to pathogenic state remain unclear. In this study, to further elucidate the mechanisms underlying virulence expression, we identified and characterized the cell surface-associated ecto-5'-nucleotidase (Nt5e) in S. oralis. Biochemical analysis revealed Nt5e as a metal-dependent enzyme dephosphorylating ATP and producing adenosine, an immunosuppressive molecule that inhibits macrophage activation. Additionally, Nt5e was a critical regulator of innate immunity, particularly inflammasome activation, via environmental ATP metabolism. Analysis of an isogenic nt5e deletion mutant and its complemented strain revealed that cell surface-associated Nt5e played a crucial role in degrading extracellular ATP. The Nt5e-orchestrated mechanism possibly maintained the host-bacteria homeostasis under normal conditions, whereas its dysregulation facilitated pathogenicity in specific circumstances. Our study provides new insights into the mechanisms by which oral commensals modulate host immune responses and highlights Nt5e as a potential therapeutic target for S. oralis-associated systemic diseases.</p>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":"744 ","pages":"151206"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical and biophysical research communications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bbrc.2024.151206","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Streptococcus oralis is a commensal oral bacterium that acts as an opportunistic pathogen, causing systemic diseases, such as infective endocarditis and aspiration pneumonia. However, the specific molecular mechanisms underlying its transition from commensal to pathogenic state remain unclear. In this study, to further elucidate the mechanisms underlying virulence expression, we identified and characterized the cell surface-associated ecto-5'-nucleotidase (Nt5e) in S. oralis. Biochemical analysis revealed Nt5e as a metal-dependent enzyme dephosphorylating ATP and producing adenosine, an immunosuppressive molecule that inhibits macrophage activation. Additionally, Nt5e was a critical regulator of innate immunity, particularly inflammasome activation, via environmental ATP metabolism. Analysis of an isogenic nt5e deletion mutant and its complemented strain revealed that cell surface-associated Nt5e played a crucial role in degrading extracellular ATP. The Nt5e-orchestrated mechanism possibly maintained the host-bacteria homeostasis under normal conditions, whereas its dysregulation facilitated pathogenicity in specific circumstances. Our study provides new insights into the mechanisms by which oral commensals modulate host immune responses and highlights Nt5e as a potential therapeutic target for S. oralis-associated systemic diseases.
期刊介绍:
Biochemical and Biophysical Research Communications is the premier international journal devoted to the very rapid dissemination of timely and significant experimental results in diverse fields of biological research. The development of the "Breakthroughs and Views" section brings the minireview format to the journal, and issues often contain collections of special interest manuscripts. BBRC is published weekly (52 issues/year).Research Areas now include: Biochemistry; biophysics; cell biology; developmental biology; immunology
; molecular biology; neurobiology; plant biology and proteomics