{"title":"The inhibitory effect of nicotine on Lumbriculus variegatus stereotypical movements and locomotor activity.","authors":"Nia A Davies, Julanta J Carriere, Aneesha Gopal, Annie Rajan, Melisa J Wallace, Aidan Seeley","doi":"10.1016/j.pbb.2024.173953","DOIUrl":null,"url":null,"abstract":"<p><p>Nicotine has been shown to induce profound physiological and behavioural responses in invertebrate model organisms such as Caenorhabditis elegans and Drosophila melanogaster. Lumbriculus variegatus is an aquatic oligochaete worm which we have previously demonstrated has application within pharmacological research. Herein, we demonstrate the presence of endogenous acetylcholine and cholinesterase activity within L. variegatus and show the time-dependent effects on the sensitivity of L. variegatus to nicotine. We describe the effects of a broad range of concentrations of nicotine (1 μM - 1 mM) on L. variegatus response to tactile stimulation and locomotor activity following acute (10-min) and chronic (24-h) exposure. Here, we show that 10 min of exposure to ≥0.1 mM nicotine reversibly reduces the ability of tactile stimulation to elicit stereotypical movements of body reversal and helical swimming, and locomotor activity in L. variegatus. We also demonstrate that exposure to ≥0.1 mM nicotine for 24 h was toxic to L. variegatus. Chronic low-dose nicotine ≥25 μM similarly inhibits L. variegatus behaviours with 50 μM causing irreversible inhibition of movement. Thus, L. variegatus presents a model for studying the effects of nicotine and further demonstrates the application of the in vivo model L. variegatus for behavioural pharmacology research.</p>","PeriodicalId":19893,"journal":{"name":"Pharmacology Biochemistry and Behavior","volume":" ","pages":"173953"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacology Biochemistry and Behavior","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1016/j.pbb.2024.173953","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Nicotine has been shown to induce profound physiological and behavioural responses in invertebrate model organisms such as Caenorhabditis elegans and Drosophila melanogaster. Lumbriculus variegatus is an aquatic oligochaete worm which we have previously demonstrated has application within pharmacological research. Herein, we demonstrate the presence of endogenous acetylcholine and cholinesterase activity within L. variegatus and show the time-dependent effects on the sensitivity of L. variegatus to nicotine. We describe the effects of a broad range of concentrations of nicotine (1 μM - 1 mM) on L. variegatus response to tactile stimulation and locomotor activity following acute (10-min) and chronic (24-h) exposure. Here, we show that 10 min of exposure to ≥0.1 mM nicotine reversibly reduces the ability of tactile stimulation to elicit stereotypical movements of body reversal and helical swimming, and locomotor activity in L. variegatus. We also demonstrate that exposure to ≥0.1 mM nicotine for 24 h was toxic to L. variegatus. Chronic low-dose nicotine ≥25 μM similarly inhibits L. variegatus behaviours with 50 μM causing irreversible inhibition of movement. Thus, L. variegatus presents a model for studying the effects of nicotine and further demonstrates the application of the in vivo model L. variegatus for behavioural pharmacology research.
期刊介绍:
Pharmacology Biochemistry & Behavior publishes original reports in the areas of pharmacology and biochemistry in which the primary emphasis and theoretical context are behavioral. Contributions may involve clinical, preclinical, or basic research. Purely biochemical or toxicology studies will not be published. Papers describing the behavioral effects of novel drugs in models of psychiatric, neurological and cognitive disorders, and central pain must include a positive control unless the paper is on a disease where such a drug is not available yet. Papers focusing on physiological processes (e.g., peripheral pain mechanisms, body temperature regulation, seizure activity) are not accepted as we would like to retain the focus of Pharmacology Biochemistry & Behavior on behavior and its interaction with the biochemistry and neurochemistry of the central nervous system. Papers describing the effects of plant materials are generally not considered, unless the active ingredients are studied, the extraction method is well described, the doses tested are known, and clear and definite experimental evidence on the mechanism of action of the active ingredients is provided.