Vibronic Structure of the UV/Visible Absorption Spectra of Phenol and Phenolate: A Hybrid Density Functional Theory─Doktorov's Quantum Algorithm Approach.
{"title":"Vibronic Structure of the UV/Visible Absorption Spectra of Phenol and Phenolate: A Hybrid Density Functional Theory─Doktorov's Quantum Algorithm Approach.","authors":"Renato Olarte Hernandez, Armand Soldera, Benoît Champagne","doi":"10.1021/acs.jpca.4c06960","DOIUrl":null,"url":null,"abstract":"<p><p>The Doktorov's quantum algorithm has been enacted in combination with time-dependent density functional theory (TD-DFT) to simulate the vibronic structure of the UV/visible absorption spectra of the phenol and phenolate molecules. On the one hand, DFT and TD-DFT are employed with classical algorithms to calculate the ground and excited-state electronic structures as well as their vibrational frequencies and normal modes, whereas, on the other hand, quantum algorithms are employed for evaluating the vibrational transition intensities. In comparison to a previous study, <i>J. Phys. Chem. A</i> <b>2024</b>, 128, 4369-4377, which demonstrated Doktorov's quantum algorithm as a proof of concept to predict the vibronic structure of ionization spectra, it is applied here to medium-size molecules with more than 30 vibrational normal modes, without accounting for Duschinsky rotations due to software limitations. This application to simulate the vibronic structures of the spectra of phenol and phenolate also enables assessing the impact of the differences in vibrational frequencies between the ground and excited electronic states.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.4c06960","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The Doktorov's quantum algorithm has been enacted in combination with time-dependent density functional theory (TD-DFT) to simulate the vibronic structure of the UV/visible absorption spectra of the phenol and phenolate molecules. On the one hand, DFT and TD-DFT are employed with classical algorithms to calculate the ground and excited-state electronic structures as well as their vibrational frequencies and normal modes, whereas, on the other hand, quantum algorithms are employed for evaluating the vibrational transition intensities. In comparison to a previous study, J. Phys. Chem. A2024, 128, 4369-4377, which demonstrated Doktorov's quantum algorithm as a proof of concept to predict the vibronic structure of ionization spectra, it is applied here to medium-size molecules with more than 30 vibrational normal modes, without accounting for Duschinsky rotations due to software limitations. This application to simulate the vibronic structures of the spectra of phenol and phenolate also enables assessing the impact of the differences in vibrational frequencies between the ground and excited electronic states.
期刊介绍:
The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.