Visible-Light-Absorbing Photosensitizer Nanostructures for Treatment of Pathogenic Bacteria and Induction of Systemic Acquired Resistance

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2024-12-24 DOI:10.1021/acsnano.4c16026
Yinglong Wu, Xiaodong Zhang, Lihe Sun, Yue Zhao, Xiaokai Chen, Wenbin Zhong, Ting He, Yi Guo, Dongdong Wang, Hongzhong Chen, Fang Zeng, Shuizhu Wu, Yanli Zhao
{"title":"Visible-Light-Absorbing Photosensitizer Nanostructures for Treatment of Pathogenic Bacteria and Induction of Systemic Acquired Resistance","authors":"Yinglong Wu, Xiaodong Zhang, Lihe Sun, Yue Zhao, Xiaokai Chen, Wenbin Zhong, Ting He, Yi Guo, Dongdong Wang, Hongzhong Chen, Fang Zeng, Shuizhu Wu, Yanli Zhao","doi":"10.1021/acsnano.4c16026","DOIUrl":null,"url":null,"abstract":"Induction of systemic acquired resistance (SAR) in plants to control bacterial diseases has become an effective solution to the problems of agrochemical resistance and ecological environment damage caused by long-term and large-scale use of traditional bactericides. However, current SAR-inducing compounds are often unable to rapidly eliminate pathogenic bacteria in infected plant tissues to prevent further spread of the disease, severely restraining the potential for extensive application in agriculture. Herein, we address the limitations by developing a series of visible-light-absorbing aggregation-induced emission photosensitizers suitable for agricultural use. The photosensitizer (MTSQ2) is modulated by molecular engineering to have optimal optical properties, reactive oxygen species (ROS) generation efficiency, and bacterial targeting affinity, thereby exhibiting an effective antibacterial photodynamic activity against the phytopathogenic bacteria <i>Pseudomonas syringae</i> pv <i>tomato</i> DC3000 in the model plant <i>Arabidopsis thaliana</i> under white light illumination. Moreover, the ROS produced in situ by MTSQ2 can further regulate the ROS-AzA-G3P signaling pathway, thus allowing to induce SAR throughout the plant to prevent secondary infections. The current study can provide a feasible strategy for developing desirable photosensitizers to achieve sustainable management of plant diseases.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"32 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c16026","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Induction of systemic acquired resistance (SAR) in plants to control bacterial diseases has become an effective solution to the problems of agrochemical resistance and ecological environment damage caused by long-term and large-scale use of traditional bactericides. However, current SAR-inducing compounds are often unable to rapidly eliminate pathogenic bacteria in infected plant tissues to prevent further spread of the disease, severely restraining the potential for extensive application in agriculture. Herein, we address the limitations by developing a series of visible-light-absorbing aggregation-induced emission photosensitizers suitable for agricultural use. The photosensitizer (MTSQ2) is modulated by molecular engineering to have optimal optical properties, reactive oxygen species (ROS) generation efficiency, and bacterial targeting affinity, thereby exhibiting an effective antibacterial photodynamic activity against the phytopathogenic bacteria Pseudomonas syringae pv tomato DC3000 in the model plant Arabidopsis thaliana under white light illumination. Moreover, the ROS produced in situ by MTSQ2 can further regulate the ROS-AzA-G3P signaling pathway, thus allowing to induce SAR throughout the plant to prevent secondary infections. The current study can provide a feasible strategy for developing desirable photosensitizers to achieve sustainable management of plant diseases.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信