{"title":"Regulation and response of heterotrophic bacterial production to environmental changes in marginal seas of the Western Pacific Ocean","authors":"Qiao Liu, Jinyan Wang, Xiao-Jun Li, Ni Meng, Gui-Peng Yang, Guiling Zhang, Guang-Chao Zhuang","doi":"10.1016/j.gloplacha.2024.104678","DOIUrl":null,"url":null,"abstract":"Heterotrophic bacterial production represents an important part of microbial food web processes in marine ecosystems and plays a significant role in biogeochemical carbon cycle. As environmental factors have changed in marginal seas of the Western Pacific Ocean over the past 20 years, the response and regulation of bacterial production remain poorly understood. In this study, we quantified bacterial production rates using the <ce:sup loc=\"post\">3</ce:sup>H-leucine incorporation method and investigated the factors influencing bacterial production distributions in the East China Sea and the Yellow Sea. Our data revealed that bacterial production varied largely (1.6–24.4 mg C m<ce:sup loc=\"post\">−3</ce:sup> d<ce:sup loc=\"post\">−1</ce:sup>) in the surface waters, and higher rates were observed at temperate sites in the East China Sea. Incubation experiments under different temperature or nutrient conditions demonstrated that elevated temperature or the addition of silicate, DIN and phosphate could simulate heterotrophic activity. The decadal increases of BP could be a result of microbial response to the variations in temperature, nutrient levels, and dissolved oxygen that are closely linked to food-web dynamics and biogeochemical processes. High ratios of integrated bacterial production to primary production suggested bacterial production could be supported by non-phytoplanktonic carbon sources, while the low bacterial growth efficiency indicated that a large fraction of carbon was respired in the offshore waters. These results provided insights into the regulations of BP and heterotrophic response to environmental evolution in marginal seas of the Western Pacific Ocean.","PeriodicalId":55089,"journal":{"name":"Global and Planetary Change","volume":"294 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global and Planetary Change","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.gloplacha.2024.104678","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Heterotrophic bacterial production represents an important part of microbial food web processes in marine ecosystems and plays a significant role in biogeochemical carbon cycle. As environmental factors have changed in marginal seas of the Western Pacific Ocean over the past 20 years, the response and regulation of bacterial production remain poorly understood. In this study, we quantified bacterial production rates using the 3H-leucine incorporation method and investigated the factors influencing bacterial production distributions in the East China Sea and the Yellow Sea. Our data revealed that bacterial production varied largely (1.6–24.4 mg C m−3 d−1) in the surface waters, and higher rates were observed at temperate sites in the East China Sea. Incubation experiments under different temperature or nutrient conditions demonstrated that elevated temperature or the addition of silicate, DIN and phosphate could simulate heterotrophic activity. The decadal increases of BP could be a result of microbial response to the variations in temperature, nutrient levels, and dissolved oxygen that are closely linked to food-web dynamics and biogeochemical processes. High ratios of integrated bacterial production to primary production suggested bacterial production could be supported by non-phytoplanktonic carbon sources, while the low bacterial growth efficiency indicated that a large fraction of carbon was respired in the offshore waters. These results provided insights into the regulations of BP and heterotrophic response to environmental evolution in marginal seas of the Western Pacific Ocean.
期刊介绍:
The objective of the journal Global and Planetary Change is to provide a multi-disciplinary overview of the processes taking place in the Earth System and involved in planetary change over time. The journal focuses on records of the past and current state of the earth system, and future scenarios , and their link to global environmental change. Regional or process-oriented studies are welcome if they discuss global implications. Topics include, but are not limited to, changes in the dynamics and composition of the atmosphere, oceans and cryosphere, as well as climate change, sea level variation, observations/modelling of Earth processes from deep to (near-)surface and their coupling, global ecology, biogeography and the resilience/thresholds in ecosystems.
Key criteria for the consideration of manuscripts are (a) the relevance for the global scientific community and/or (b) the wider implications for global scale problems, preferably combined with (c) having a significance beyond a single discipline. A clear focus on key processes associated with planetary scale change is strongly encouraged.
Manuscripts can be submitted as either research contributions or as a review article. Every effort should be made towards the presentation of research outcomes in an understandable way for a broad readership.