Magnesium Oxide-Supported Single Atoms with Fine-Modulated Steric Location for Polymerization Transfer Removal of Water Pollutants

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Yu-Qin Liu, Lixin Tian, Mingjie Huang, Hong-Zhi Liu, Zhi-Yan Guo, Jian Ding, Wen-Qi Xia, Lang Teng, Han-Qing Yu, Wen-Wei Li
{"title":"Magnesium Oxide-Supported Single Atoms with Fine-Modulated Steric Location for Polymerization Transfer Removal of Water Pollutants","authors":"Yu-Qin Liu, Lixin Tian, Mingjie Huang, Hong-Zhi Liu, Zhi-Yan Guo, Jian Ding, Wen-Qi Xia, Lang Teng, Han-Qing Yu, Wen-Wei Li","doi":"10.1021/acs.est.4c06608","DOIUrl":null,"url":null,"abstract":"Organic pollutants removal via a polymerization transfer (PT) pathway based on the use of single-atom catalysts (SACs) promises efficient water purification with minimal energy/chemical inputs. However, the precise engineering of such catalytic systems toward PT decontamination is still challenging, and the conventional SACs are plagued by low structural stability of carbon material support. Here, we adopted magnesium oxide (MgO) as a structurally stable alternative for loading single copper (Cu) atoms to drive peroxymonosulfate-based Fenton-like reactions. Through fine-tuning the Cu atom steric location from lattice-embedding to surface-loading, the system exhibited a fundamental transition in the catalytic pathways toward the PT process and drastically improved decontamination efficiency. The catalytic pathway change was mainly ascribed to a downshifted <i>d</i>-band center of the Cu atoms. The optimized catalyst achieved complete, rapid removal of phenolic compounds from water via nearly 100% PT pathway, accompanied by high oxidant utilization efficiency surpassing most state-of-the-art SACs. Moreover, it showed excellent structural stability and environmental robustness and was successfully used for the treatment of lake water and industrial coking wastewater. The adaptability of the spatial engineering strategy to other MgO-supported single atoms, including Fe, Co, and Ni SACs, was also demonstrated. Our work lays a foundation for further advancing SACs-based advanced oxidation technologies toward sustainable water purification applications.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"57 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c06608","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Organic pollutants removal via a polymerization transfer (PT) pathway based on the use of single-atom catalysts (SACs) promises efficient water purification with minimal energy/chemical inputs. However, the precise engineering of such catalytic systems toward PT decontamination is still challenging, and the conventional SACs are plagued by low structural stability of carbon material support. Here, we adopted magnesium oxide (MgO) as a structurally stable alternative for loading single copper (Cu) atoms to drive peroxymonosulfate-based Fenton-like reactions. Through fine-tuning the Cu atom steric location from lattice-embedding to surface-loading, the system exhibited a fundamental transition in the catalytic pathways toward the PT process and drastically improved decontamination efficiency. The catalytic pathway change was mainly ascribed to a downshifted d-band center of the Cu atoms. The optimized catalyst achieved complete, rapid removal of phenolic compounds from water via nearly 100% PT pathway, accompanied by high oxidant utilization efficiency surpassing most state-of-the-art SACs. Moreover, it showed excellent structural stability and environmental robustness and was successfully used for the treatment of lake water and industrial coking wastewater. The adaptability of the spatial engineering strategy to other MgO-supported single atoms, including Fe, Co, and Ni SACs, was also demonstrated. Our work lays a foundation for further advancing SACs-based advanced oxidation technologies toward sustainable water purification applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信