Discovery of Novel Bicyclic and Tricyclic Cyclohepta[b]thiophene Derivatives as Multipotent AChE and BChE Inhibitors, In-Vivo and In-Vitro Assays, ADMET and Molecular Docking Simulation

IF 6 2区 医学 Q1 CHEMISTRY, MEDICINAL
Eman A. Fayed, Samiha Ahmed El-Sebaey, Maha A. Ebrahim, Karema Abu-Elfotuh, Reda El-Sayed Mansour, Ehsan Khedre Mohamed, Ahmed M.E. Hamdan, Faleh Turki Al-subaie, Gharam Saad Albalawi, Tariq Mohammed Albalawi, Amira M. Hamdan, Asmaa A. Mohammed, Triveena M. Ramsis
{"title":"Discovery of Novel Bicyclic and Tricyclic Cyclohepta[b]thiophene Derivatives as Multipotent AChE and BChE Inhibitors, In-Vivo and In-Vitro Assays, ADMET and Molecular Docking Simulation","authors":"Eman A. Fayed, Samiha Ahmed El-Sebaey, Maha A. Ebrahim, Karema Abu-Elfotuh, Reda El-Sayed Mansour, Ehsan Khedre Mohamed, Ahmed M.E. Hamdan, Faleh Turki Al-subaie, Gharam Saad Albalawi, Tariq Mohammed Albalawi, Amira M. Hamdan, Asmaa A. Mohammed, Triveena M. Ramsis","doi":"10.1016/j.ejmech.2024.117201","DOIUrl":null,"url":null,"abstract":"Alzheimer’s disease (AD) is primarily caused by oxidative stress, hyperphosphorylated τ-protein aggregation, and amyloid-<em>β</em> deposition. Changes in dopaminergic and serotoninergic neurotransmitter pathways are linked to certain symptoms of AD. Derivatives of bicyclic and tricyclic cyclohepta[<em>b</em>]thiophene were developed to identify new potential candidates as acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors for the treatment of AD. All synthesized compounds exhibited AChE inhibition with IC<sub>50</sub> values below 15 μM, while all compounds exhibited BChE inhibition with IC<sub>50</sub> values below 25 μM. Compounds <strong>9</strong> and <strong>12</strong> exhibited AChE inhibitory activities with IC<sub>50</sub> values of 0.51 μM and 0.55 μM, respectively. Compounds <strong>5</strong> and <strong>9</strong> demonstrated excellent inhibitory activity against BChE with IC<sub>50</sub> values of 2.9 μM and 2.48 μM, respectively. Compounds <strong>9</strong>, <strong>13</strong>, and <strong>14</strong> were found to be the most active in terms of the decrease in the escape latency time, with values comparable to that of Donepezil. Compounds <strong>10</strong>, <strong>11</strong>, and <strong>12</strong> exhibited promising effects on learning and memory. Compounds <strong>5</strong>, <strong>10</strong>, <strong>11</strong>, and <strong>12</strong> exhibited promising SAP values of 70.67%, 71.5%, 74.33% and 73.83%, respectively. Other biomarkers were evaluated in rat brains including TAC, MDA, SOD, BDNF, IL-<em>β</em> and TNF-<em>α</em>. Fundamental features of ADMET have been computed <em>in-silico</em> for synthesized compounds. Molecular docking was performed to confirm the binding of the novel compounds to the targets.","PeriodicalId":314,"journal":{"name":"European Journal of Medicinal Chemistry","volume":"11 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ejmech.2024.117201","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Alzheimer’s disease (AD) is primarily caused by oxidative stress, hyperphosphorylated τ-protein aggregation, and amyloid-β deposition. Changes in dopaminergic and serotoninergic neurotransmitter pathways are linked to certain symptoms of AD. Derivatives of bicyclic and tricyclic cyclohepta[b]thiophene were developed to identify new potential candidates as acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors for the treatment of AD. All synthesized compounds exhibited AChE inhibition with IC50 values below 15 μM, while all compounds exhibited BChE inhibition with IC50 values below 25 μM. Compounds 9 and 12 exhibited AChE inhibitory activities with IC50 values of 0.51 μM and 0.55 μM, respectively. Compounds 5 and 9 demonstrated excellent inhibitory activity against BChE with IC50 values of 2.9 μM and 2.48 μM, respectively. Compounds 9, 13, and 14 were found to be the most active in terms of the decrease in the escape latency time, with values comparable to that of Donepezil. Compounds 10, 11, and 12 exhibited promising effects on learning and memory. Compounds 5, 10, 11, and 12 exhibited promising SAP values of 70.67%, 71.5%, 74.33% and 73.83%, respectively. Other biomarkers were evaluated in rat brains including TAC, MDA, SOD, BDNF, IL-β and TNF-α. Fundamental features of ADMET have been computed in-silico for synthesized compounds. Molecular docking was performed to confirm the binding of the novel compounds to the targets.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.70
自引率
9.00%
发文量
863
审稿时长
29 days
期刊介绍: The European Journal of Medicinal Chemistry is a global journal that publishes studies on all aspects of medicinal chemistry. It provides a medium for publication of original papers and also welcomes critical review papers. A typical paper would report on the organic synthesis, characterization and pharmacological evaluation of compounds. Other topics of interest are drug design, QSAR, molecular modeling, drug-receptor interactions, molecular aspects of drug metabolism, prodrug synthesis and drug targeting. The journal expects manuscripts to present the rational for a study, provide insight into the design of compounds or understanding of mechanism, or clarify the targets.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信