One-Pot Synthesis of Tumor-Targeted Gold-Doped Cu1.92S Plasmonic Nanodots for Enhanced NIR-Triggered, pH-Responsive PTT/PDT/CDT

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Neha Mehrotra, Kaushik Pal
{"title":"One-Pot Synthesis of Tumor-Targeted Gold-Doped Cu1.92S Plasmonic Nanodots for Enhanced NIR-Triggered, pH-Responsive PTT/PDT/CDT","authors":"Neha Mehrotra, Kaushik Pal","doi":"10.1021/acsami.4c16067","DOIUrl":null,"url":null,"abstract":"Copper-based sulfides are attractive candidates for NIR I and II responsive photothermal therapy but often suffer from high hydrophobicity, suboptimal photothermal conversion, and poor biostability and biocompatibility. In the present work, a rapid, one-pot synthesis method was developed to obtain Au-doped Cu<sub>1.92</sub>S (ACSH NDs) dual plasmonic nanodots. ACSH NDs exhibit excellent peroxidase-like catalytic activity for pH-responsive <sup>•</sup>OH radical generation along with efficient glutathione depletion under tumor microenvironment mimicking conditions. Upon exposure to NIR-I laser light, ACSH NDs demonstrate high photothermal conversion efficiency of 47.44% as well as significant photodynamic effect through singlet oxygen generation. The <i>in situ</i> hyaluronic acid capping endows the nanodots with efficient and highly selective uptake in breast cancer cells both <i>in vitro</i> and <i>in vivo</i>. Simultaneous chemodynamic and NIR-triggered photothermal/photodynamic activities of ACSH NDs result in synergistic tumor cell death with 98% tumor inhibition in a single-dose mouse model study. Therefore, the developed ACSH NDs show remarkable potential for single nanoplatform-actuated drug-free multimodal cancer therapy.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"25 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c16067","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Copper-based sulfides are attractive candidates for NIR I and II responsive photothermal therapy but often suffer from high hydrophobicity, suboptimal photothermal conversion, and poor biostability and biocompatibility. In the present work, a rapid, one-pot synthesis method was developed to obtain Au-doped Cu1.92S (ACSH NDs) dual plasmonic nanodots. ACSH NDs exhibit excellent peroxidase-like catalytic activity for pH-responsive OH radical generation along with efficient glutathione depletion under tumor microenvironment mimicking conditions. Upon exposure to NIR-I laser light, ACSH NDs demonstrate high photothermal conversion efficiency of 47.44% as well as significant photodynamic effect through singlet oxygen generation. The in situ hyaluronic acid capping endows the nanodots with efficient and highly selective uptake in breast cancer cells both in vitro and in vivo. Simultaneous chemodynamic and NIR-triggered photothermal/photodynamic activities of ACSH NDs result in synergistic tumor cell death with 98% tumor inhibition in a single-dose mouse model study. Therefore, the developed ACSH NDs show remarkable potential for single nanoplatform-actuated drug-free multimodal cancer therapy.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信