{"title":"Effects of environmental exposure on Portland cement Type IL","authors":"Rotana Hay, Parham Aghdasi","doi":"10.1016/j.cemconres.2024.107775","DOIUrl":null,"url":null,"abstract":"This study investigates the physico-chemical change in a Type IL cement prehydrated in the natural environment for 7, 14, and 21 days. A focus was made on the reaction kinetics, product formation, and strength development using calorimetry, XRF, QXRD, TGA and compressive testing. It was found that prehydration converted hemihydrate to gypsum and partially transformed the principal cement phases and inherent portlandite into carbonates, thus reducing C<sub>3</sub>S and C<sub>2</sub>S while increasing CaCO<sub>3</sub> and gypsum. Hydration was slowed down with a delay in the appearance of the aluminate peak and reduction in cumulative heat at 72 h. Consequently, more C<sub>3</sub>S and C<sub>2</sub>S remained at an early age. Less ettringite was formed while amorphous phases were initially reduced but promoted later on. A secondary decomposition peak linked to metastable CaCO<sub>3</sub> became more prominent in the prehydrated samples. The early-age strength was reduced with the exposure time, but the 28-day strength improved due to the continuing hydration.","PeriodicalId":266,"journal":{"name":"Cement and Concrete Research","volume":"41 1","pages":""},"PeriodicalIF":10.9000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement and Concrete Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cemconres.2024.107775","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the physico-chemical change in a Type IL cement prehydrated in the natural environment for 7, 14, and 21 days. A focus was made on the reaction kinetics, product formation, and strength development using calorimetry, XRF, QXRD, TGA and compressive testing. It was found that prehydration converted hemihydrate to gypsum and partially transformed the principal cement phases and inherent portlandite into carbonates, thus reducing C3S and C2S while increasing CaCO3 and gypsum. Hydration was slowed down with a delay in the appearance of the aluminate peak and reduction in cumulative heat at 72 h. Consequently, more C3S and C2S remained at an early age. Less ettringite was formed while amorphous phases were initially reduced but promoted later on. A secondary decomposition peak linked to metastable CaCO3 became more prominent in the prehydrated samples. The early-age strength was reduced with the exposure time, but the 28-day strength improved due to the continuing hydration.
期刊介绍:
Cement and Concrete Research is dedicated to publishing top-notch research on the materials science and engineering of cement, cement composites, mortars, concrete, and related materials incorporating cement or other mineral binders. The journal prioritizes reporting significant findings in research on the properties and performance of cementitious materials. It also covers novel experimental techniques, the latest analytical and modeling methods, examination and diagnosis of actual cement and concrete structures, and the exploration of potential improvements in materials.