Ensemble data assimilation for operational streamflow predictions in the next generation (NextGen) framework

IF 4.8 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Ehsan Foroumandi , Hamid Moradkhani , Witold F. Krajewski , Fred L. Ogden
{"title":"Ensemble data assimilation for operational streamflow predictions in the next generation (NextGen) framework","authors":"Ehsan Foroumandi ,&nbsp;Hamid Moradkhani ,&nbsp;Witold F. Krajewski ,&nbsp;Fred L. Ogden","doi":"10.1016/j.envsoft.2024.106306","DOIUrl":null,"url":null,"abstract":"<div><div>The National Weather Service (NWS) operates the National Water Model (NWM) to provide continental-scale streamflow forecasting across the United States. Despite the broad scope of NWM, it faces limitations in delivering operational-level predictions. To overcome these limitations, the NWS embarked on development of the Next Generation Water Resources Modeling Framework (NextGen). However, a key shortcoming of the NextGen and NWM is the lack of robust data assimilation (DA) step. This study provides a DA module that incorporates the Ensemble Kalman Filter (EnKF), and the Particle Filter (PF) for use within the NextGen framework. The effectiveness of the developed module is evaluated by assimilating the in-situ observations to the Conceptual Functional Equivalent model, a simplified version of the current NWM, demonstrating the first advanced DA application on this model. The results show that both DA methods effectively enhance the performance of the model prediction, while the PF outperforms the EnKF.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"185 ","pages":"Article 106306"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815224003670","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The National Weather Service (NWS) operates the National Water Model (NWM) to provide continental-scale streamflow forecasting across the United States. Despite the broad scope of NWM, it faces limitations in delivering operational-level predictions. To overcome these limitations, the NWS embarked on development of the Next Generation Water Resources Modeling Framework (NextGen). However, a key shortcoming of the NextGen and NWM is the lack of robust data assimilation (DA) step. This study provides a DA module that incorporates the Ensemble Kalman Filter (EnKF), and the Particle Filter (PF) for use within the NextGen framework. The effectiveness of the developed module is evaluated by assimilating the in-situ observations to the Conceptual Functional Equivalent model, a simplified version of the current NWM, demonstrating the first advanced DA application on this model. The results show that both DA methods effectively enhance the performance of the model prediction, while the PF outperforms the EnKF.
下一代(NextGen)框架中用于操作流预测的集成数据同化
美国国家气象局(NWS)运行国家水模型(NWM),提供全美国大陆尺度的河流流量预报。尽管NWM的范围很广,但它在提供操作级预测方面面临限制。为了克服这些限制,NWS开始开发下一代水资源建模框架(NextGen)。然而,下一代和NWM的一个主要缺点是缺乏稳健的数据同化(DA)步骤。本研究提供了一个集成了集成卡尔曼滤波器(EnKF)和粒子滤波器(PF)的数据处理模块,用于NextGen框架。开发的模块的有效性通过将现场观测同化到概念功能等效模型(当前NWM的简化版本)来评估,展示了该模型上的第一个高级数据分析应用。结果表明,两种数据分析方法都能有效地提高模型的预测性能,而PF方法优于EnKF方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信