{"title":"Concurrent and Non-Concurrent Pulse-Current Charging for Electric Vehicle Lithium-Ion Batteries","authors":"Linta Eliya Mathew;Ashish K Panchal","doi":"10.1109/TVT.2024.3521949","DOIUrl":null,"url":null,"abstract":"By the end of 2030, a large electric vehicle (EV) adoption on the roads will overburden the power grid for EV charging. Therefore, in order to divert EV loads from the grid, a grid-free EV battery charger is proposed in this article. The charger consists of a photovoltaic (PV) panel as a source with parallel sets of four-switch-buck-boost (FSBB) converters and Lithium-ion (Li-ion) batteries. The main theme of the control method is to harvest maximum PV power while delivering energy to the battery with contemplating battery life extension. In order to fulfill these two control objectives, an accurate 4-point PV-MPPT combined with pulse current battery charging methods are employed. In a simulation study of the parallel configuration with a 250 W PV panel and two 48 V Li-ion batteries, the concurrent operation of converters (COC) and non-concurrent operation of converters (NOC) are examined. In the COC pulse charging, two batteries simultaneously receive half PV power, whilst in the NOC pulse charging, two batteries alternately receive full PV power. It has been established that the NOC delivers continuous PV power and charges both batteries at a faster rate than the COC. Further, the simulation analysis is illustrated with a 20 kW PV parking shed for workplace for charging ten e-cars' batteries possessing different initial SoCs in NOC. Finally, an experimental proof of the concept is validated through a laboratory-scale hardware design of a 250 W PV panel charging two 48 V Li-ion batteries.","PeriodicalId":13421,"journal":{"name":"IEEE Transactions on Vehicular Technology","volume":"74 4","pages":"5349-5357"},"PeriodicalIF":7.1000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Vehicular Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10814679/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
By the end of 2030, a large electric vehicle (EV) adoption on the roads will overburden the power grid for EV charging. Therefore, in order to divert EV loads from the grid, a grid-free EV battery charger is proposed in this article. The charger consists of a photovoltaic (PV) panel as a source with parallel sets of four-switch-buck-boost (FSBB) converters and Lithium-ion (Li-ion) batteries. The main theme of the control method is to harvest maximum PV power while delivering energy to the battery with contemplating battery life extension. In order to fulfill these two control objectives, an accurate 4-point PV-MPPT combined with pulse current battery charging methods are employed. In a simulation study of the parallel configuration with a 250 W PV panel and two 48 V Li-ion batteries, the concurrent operation of converters (COC) and non-concurrent operation of converters (NOC) are examined. In the COC pulse charging, two batteries simultaneously receive half PV power, whilst in the NOC pulse charging, two batteries alternately receive full PV power. It has been established that the NOC delivers continuous PV power and charges both batteries at a faster rate than the COC. Further, the simulation analysis is illustrated with a 20 kW PV parking shed for workplace for charging ten e-cars' batteries possessing different initial SoCs in NOC. Finally, an experimental proof of the concept is validated through a laboratory-scale hardware design of a 250 W PV panel charging two 48 V Li-ion batteries.
期刊介绍:
The scope of the Transactions is threefold (which was approved by the IEEE Periodicals Committee in 1967) and is published on the journal website as follows: Communications: The use of mobile radio on land, sea, and air, including cellular radio, two-way radio, and one-way radio, with applications to dispatch and control vehicles, mobile radiotelephone, radio paging, and status monitoring and reporting. Related areas include spectrum usage, component radio equipment such as cavities and antennas, compute control for radio systems, digital modulation and transmission techniques, mobile radio circuit design, radio propagation for vehicular communications, effects of ignition noise and radio frequency interference, and consideration of the vehicle as part of the radio operating environment. Transportation Systems: The use of electronic technology for the control of ground transportation systems including, but not limited to, traffic aid systems; traffic control systems; automatic vehicle identification, location, and monitoring systems; automated transport systems, with single and multiple vehicle control; and moving walkways or people-movers. Vehicular Electronics: The use of electronic or electrical components and systems for control, propulsion, or auxiliary functions, including but not limited to, electronic controls for engineer, drive train, convenience, safety, and other vehicle systems; sensors, actuators, and microprocessors for onboard use; electronic fuel control systems; vehicle electrical components and systems collision avoidance systems; electromagnetic compatibility in the vehicle environment; and electric vehicles and controls.