Simulating phosphorus dynamics between the soil and the crop with the STICS model: Formalization and multi-site evaluation on maize in temperate area

IF 4.5 1区 农林科学 Q1 AGRONOMY
Mounir Seghouani, Matthieu N. Bravin, Patrice Lecharpentier, Alain Mollier
{"title":"Simulating phosphorus dynamics between the soil and the crop with the STICS model: Formalization and multi-site evaluation on maize in temperate area","authors":"Mounir Seghouani, Matthieu N. Bravin, Patrice Lecharpentier, Alain Mollier","doi":"10.1016/j.eja.2024.127475","DOIUrl":null,"url":null,"abstract":"Soil-crop models are pertinent tools to study and manage phosphorus (P) in agroecosystems. However, P modeling is suffering a delay as compared to nitrogen and carbon. In this study, we extended the STICS model to simulate the P uptake and P feed-back by coupling it with a soil-plant P model. The paper aims at describing the P model and present the results showing the ability of the model to simulate contrasting P uptake and growth response pattern of maize submitted to different level of P inputs. in temperate area. The model simulates the soil P availability and the crop P demand, uptake, and partitioning. A major originality of this work is that it relies on soil solution P concentration and P sorption curves to simulate soil P availability, and critical P dilution curves to simulate crop P demand. We evaluated the model against a dataset coming from four field fertilization trials located at different site in mainland France. The trials consisted of fertilizing maize with a mineral fertilizer at three application rates (P0, P1, P2) which induced contrasted crop responses to P shortage. The model has shown great ability in predicting P uptake both dynamically and at the end of the cropping season for the entire dataset (EF >0.75). The model has satisfactory predictions of crop biomass accumulation (EF >0.5) and leaf area index. Considering each fertilization level separately, the evaluation has shown that the model had predicted the final P uptake of P1 and P2 treatments better than that of P0 treatment (EF of 0.74, 0.73 and 0.62 for P2, P1, and P0, respectively). The predictions made for the P0 treatment remained nonetheless satisfactory for both P uptake and plant growth. The good performance of the model is promising as it shows that the model is sufficiently robust to simulate maize P uptake across a range of soil P availability and P fertilization under contrasting temperate climatic conditions. Further validation on other crop species and soil and climatic conditions is discussed.","PeriodicalId":51045,"journal":{"name":"European Journal of Agronomy","volume":"202 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Agronomy","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.eja.2024.127475","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Soil-crop models are pertinent tools to study and manage phosphorus (P) in agroecosystems. However, P modeling is suffering a delay as compared to nitrogen and carbon. In this study, we extended the STICS model to simulate the P uptake and P feed-back by coupling it with a soil-plant P model. The paper aims at describing the P model and present the results showing the ability of the model to simulate contrasting P uptake and growth response pattern of maize submitted to different level of P inputs. in temperate area. The model simulates the soil P availability and the crop P demand, uptake, and partitioning. A major originality of this work is that it relies on soil solution P concentration and P sorption curves to simulate soil P availability, and critical P dilution curves to simulate crop P demand. We evaluated the model against a dataset coming from four field fertilization trials located at different site in mainland France. The trials consisted of fertilizing maize with a mineral fertilizer at three application rates (P0, P1, P2) which induced contrasted crop responses to P shortage. The model has shown great ability in predicting P uptake both dynamically and at the end of the cropping season for the entire dataset (EF >0.75). The model has satisfactory predictions of crop biomass accumulation (EF >0.5) and leaf area index. Considering each fertilization level separately, the evaluation has shown that the model had predicted the final P uptake of P1 and P2 treatments better than that of P0 treatment (EF of 0.74, 0.73 and 0.62 for P2, P1, and P0, respectively). The predictions made for the P0 treatment remained nonetheless satisfactory for both P uptake and plant growth. The good performance of the model is promising as it shows that the model is sufficiently robust to simulate maize P uptake across a range of soil P availability and P fertilization under contrasting temperate climatic conditions. Further validation on other crop species and soil and climatic conditions is discussed.
求助全文
约1分钟内获得全文 求助全文
来源期刊
European Journal of Agronomy
European Journal of Agronomy 农林科学-农艺学
CiteScore
8.30
自引率
7.70%
发文量
187
审稿时长
4.5 months
期刊介绍: The European Journal of Agronomy, the official journal of the European Society for Agronomy, publishes original research papers reporting experimental and theoretical contributions to field-based agronomy and crop science. The journal will consider research at the field level for agricultural, horticultural and tree crops, that uses comprehensive and explanatory approaches. The EJA covers the following topics: crop physiology crop production and management including irrigation, fertilization and soil management agroclimatology and modelling plant-soil relationships crop quality and post-harvest physiology farming and cropping systems agroecosystems and the environment crop-weed interactions and management organic farming horticultural crops papers from the European Society for Agronomy bi-annual meetings In determining the suitability of submitted articles for publication, particular scrutiny is placed on the degree of novelty and significance of the research and the extent to which it adds to existing knowledge in agronomy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信