Attenuated NIX in impaired mitophagy contributes to exacerbating cellular senescence in experimental periodontitis under hyperglycemic conditions.

Danni Song, Beibei Chen, Tianfan Cheng, Lijian Jin, Jiangfeng He, Yongming Li, Chongshan Liao
{"title":"Attenuated NIX in impaired mitophagy contributes to exacerbating cellular senescence in experimental periodontitis under hyperglycemic conditions.","authors":"Danni Song, Beibei Chen, Tianfan Cheng, Lijian Jin, Jiangfeng He, Yongming Li, Chongshan Liao","doi":"10.1111/febs.17352","DOIUrl":null,"url":null,"abstract":"<p><p>Premature accumulation of senescent cells results in tissue destruction, and it is one of the potential primary mechanisms underlying the accelerated progression of diabetes and periodontitis. However, whether this characterized phenomenon could account for periodontal pathogenesis under hyperglycemic conditions remains unclear. In this study, we assessed the senescent phenotypic changes in experimental periodontitis under hyperglycemic conditions. Next, we investigated the mitochondrial function and the potential mitophagy pathways in cellular senescence in vitro and in vivo. Our findings showed that significant senescence occurred in the gingival tissues of diabetic periodontitis mice with increased expression of senescence-related protein p21<sup>Cip1</sup> and the senescence-associated secretory phenotype response as well as the decreased expression of NIP3-like protein X (NIX), a mitochondrial receptor. Likewise, we showed that mitochondrial dysfunction (e.g., reduction of mitochondrial membrane potential and accumulation of reactive oxygen species) was attributed to cellular senescence in: human periodontal ligament cells (hPDLCs) through hyperglycemia-induced and Porphyromonas gingivalis lipopolysaccharide (P.g-LPS)-induced oxidative stresses. Notably, the resulting reduced NIX expression was reversed by the use of the mitochondrial reactive oxygen species (ROS) scavenger N-acetyl-l-cysteine (NAC), thus correcting the mitochondrial dysfunction. We further verified the expression of inflammatory mediators and senescence-related factors in mice gingival tissues and identified the possible regulatory pathways. Taken together, our work demonstrates the critical role of cellular senescence and mitochondrial dysfunction in periodontal pathogenesis under hyperglycemic conditions. Hence, restoration of mitochondrial function may be a potential novel therapeutic approach to tackling periodontitis in diabetic patients.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FEBS journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/febs.17352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Premature accumulation of senescent cells results in tissue destruction, and it is one of the potential primary mechanisms underlying the accelerated progression of diabetes and periodontitis. However, whether this characterized phenomenon could account for periodontal pathogenesis under hyperglycemic conditions remains unclear. In this study, we assessed the senescent phenotypic changes in experimental periodontitis under hyperglycemic conditions. Next, we investigated the mitochondrial function and the potential mitophagy pathways in cellular senescence in vitro and in vivo. Our findings showed that significant senescence occurred in the gingival tissues of diabetic periodontitis mice with increased expression of senescence-related protein p21Cip1 and the senescence-associated secretory phenotype response as well as the decreased expression of NIP3-like protein X (NIX), a mitochondrial receptor. Likewise, we showed that mitochondrial dysfunction (e.g., reduction of mitochondrial membrane potential and accumulation of reactive oxygen species) was attributed to cellular senescence in: human periodontal ligament cells (hPDLCs) through hyperglycemia-induced and Porphyromonas gingivalis lipopolysaccharide (P.g-LPS)-induced oxidative stresses. Notably, the resulting reduced NIX expression was reversed by the use of the mitochondrial reactive oxygen species (ROS) scavenger N-acetyl-l-cysteine (NAC), thus correcting the mitochondrial dysfunction. We further verified the expression of inflammatory mediators and senescence-related factors in mice gingival tissues and identified the possible regulatory pathways. Taken together, our work demonstrates the critical role of cellular senescence and mitochondrial dysfunction in periodontal pathogenesis under hyperglycemic conditions. Hence, restoration of mitochondrial function may be a potential novel therapeutic approach to tackling periodontitis in diabetic patients.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
文献相关原料
公司名称 产品信息 采购帮参考价格
索莱宝 SA-β-Gal staining kit
G1580
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信