FRET-based mesoporous organosilica nanoplatforms for in vitro and in vivo anticancer two-photon photodynamic therapy†

IF 6.1 3区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS
Nicolas Bondon, Clément Charlot, Lamiaa M. A. Ali, Alexandre Barras, Nicolas Richy, Denis Durand, Yann Molard, Grégory Taupier, Erwan Oliviero, Magali Gary-Bobo, Frédéric Paul, Sabine Szunerits, Nadir Bettache, Jean-Olivier Durand, Christophe Nguyen, Rabah Boukherroub, Olivier Mongin and Clarence Charnay
{"title":"FRET-based mesoporous organosilica nanoplatforms for in vitro and in vivo anticancer two-photon photodynamic therapy†","authors":"Nicolas Bondon, Clément Charlot, Lamiaa M. A. Ali, Alexandre Barras, Nicolas Richy, Denis Durand, Yann Molard, Grégory Taupier, Erwan Oliviero, Magali Gary-Bobo, Frédéric Paul, Sabine Szunerits, Nadir Bettache, Jean-Olivier Durand, Christophe Nguyen, Rabah Boukherroub, Olivier Mongin and Clarence Charnay","doi":"10.1039/D4TB02103G","DOIUrl":null,"url":null,"abstract":"<p >We report the synthesis of multifunctional periodic mesoporous organosilica nanoparticles (PMO NPs) with substantial two-photon absorption properties and targeting capability for two-photon excitation fluorescence (TPEF) and photodynamic therapy (TPE-PDT). Prepared using an adapted sol–gel synthesis, the nanoplatforms integrated two silylated chromophores in their three-dimensional matrix to maximize non-radiative Förster resonance energy transfer from a high two-photon absorption fluorophore donor to a porphyrin derivative acceptor, leading to an enhanced generation of reactive oxygen species. Combinations of biodegradable and non-biodegradable bis(triethoxysilyl)alkoxysilanes were employed for the synthesis of the NPs, and the corresponding photophysical studies revealed high efficiency levels of FRET. Next, the cellular uptake and toxicities of pristine and functionalized NPs were evaluated on breast cancer cell lines upon TPEF and TPE-PDT. Notably, the use of TPE-PDT treatment led to high levels of phototoxicity on MCF-7 and MDA-MB-231 cancer cells with substantial effects when compared to one-photon excitation (OPE)-PDT treatment. Preliminary <em>in vivo</em> data on selective and biodegradable NPs showed a significant phototoxicity towards MDA-MB-231 on zebrafish xenograft embryos, making these advanced nanoplatforms promising candidates for future TPE-PDT-based cancer treatments.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":" 5","pages":" 1767-1780"},"PeriodicalIF":6.1000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d4tb02103g","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We report the synthesis of multifunctional periodic mesoporous organosilica nanoparticles (PMO NPs) with substantial two-photon absorption properties and targeting capability for two-photon excitation fluorescence (TPEF) and photodynamic therapy (TPE-PDT). Prepared using an adapted sol–gel synthesis, the nanoplatforms integrated two silylated chromophores in their three-dimensional matrix to maximize non-radiative Förster resonance energy transfer from a high two-photon absorption fluorophore donor to a porphyrin derivative acceptor, leading to an enhanced generation of reactive oxygen species. Combinations of biodegradable and non-biodegradable bis(triethoxysilyl)alkoxysilanes were employed for the synthesis of the NPs, and the corresponding photophysical studies revealed high efficiency levels of FRET. Next, the cellular uptake and toxicities of pristine and functionalized NPs were evaluated on breast cancer cell lines upon TPEF and TPE-PDT. Notably, the use of TPE-PDT treatment led to high levels of phototoxicity on MCF-7 and MDA-MB-231 cancer cells with substantial effects when compared to one-photon excitation (OPE)-PDT treatment. Preliminary in vivo data on selective and biodegradable NPs showed a significant phototoxicity towards MDA-MB-231 on zebrafish xenograft embryos, making these advanced nanoplatforms promising candidates for future TPE-PDT-based cancer treatments.

Abstract Image

基于fret的介孔有机二氧化硅纳米平台用于体外和体内抗癌双光子光动力治疗。
我们合成了具有双光子吸收特性和双光子激发荧光(TPEF)和光动力治疗(TPE-PDT)靶向能力的多功能周期介孔有机二氧化硅纳米颗粒(PMO NPs)。采用溶胶-凝胶合成方法制备的纳米平台将两个硅基化发色团集成在其三维基质中,以最大限度地提高从高双光子吸收荧光团供体到卟啉衍生物受体的非辐射Förster共振能量转移,从而增强活性氧的生成。采用可生物降解和不可生物降解的双(三乙氧基硅基)烷氧基硅烷组合来合成NPs,相应的光物理研究表明,FRET的效率很高。接下来,在TPEF和TPE-PDT作用下,在乳腺癌细胞系上评估了原始的和功能化的NPs的细胞摄取和毒性。值得注意的是,与单光子激发(OPE)-PDT治疗相比,TPE-PDT治疗对MCF-7和MDA-MB-231癌细胞产生了高水平的光毒性。选择性和可生物降解NPs的初步体内数据显示,在斑马鱼异种移植胚胎上,MDA-MB-231具有显著的光毒性,这使得这些先进的纳米平台有望成为未来基于tpe - pdp的癌症治疗的候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Chemistry B
Journal of Materials Chemistry B MATERIALS SCIENCE, BIOMATERIALS-
CiteScore
11.50
自引率
4.30%
发文量
866
期刊介绍: Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive: Antifouling coatings Biocompatible materials Bioelectronics Bioimaging Biomimetics Biomineralisation Bionics Biosensors Diagnostics Drug delivery Gene delivery Immunobiology Nanomedicine Regenerative medicine & Tissue engineering Scaffolds Soft robotics Stem cells Therapeutic devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信