Eduardo Alarcón-Bustamante, Jorge González, David Torres Irribarra, Ernesto San Martín
{"title":"From missing data to informative GPA predictions: Navigating selection process beliefs with the partial identifiability approach.","authors":"Eduardo Alarcón-Bustamante, Jorge González, David Torres Irribarra, Ernesto San Martín","doi":"10.1111/bmsp.12377","DOIUrl":null,"url":null,"abstract":"<p><p>The extent to which college admissions test scores can forecast college grade point average (GPA) is often evaluated in predictive validity studies using regression analyses. A problem in college admissions processes is that we observe test scores for all the applicants; however, we cannot observe the GPA of applicants who were not selected. The standard solution to tackle this problem has relied upon strong assumptions to identify the exact value of the regression function in the presence of missing data. In this paper, we present an alternative approach based on the theory of partial identifiability that considers a variety of milder assumptions to learn about the regression function. Using a university admissions dataset we illustrate how results can vary as a function of the assumptions that one is willing to make about the selection process.</p>","PeriodicalId":55322,"journal":{"name":"British Journal of Mathematical & Statistical Psychology","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Mathematical & Statistical Psychology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1111/bmsp.12377","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The extent to which college admissions test scores can forecast college grade point average (GPA) is often evaluated in predictive validity studies using regression analyses. A problem in college admissions processes is that we observe test scores for all the applicants; however, we cannot observe the GPA of applicants who were not selected. The standard solution to tackle this problem has relied upon strong assumptions to identify the exact value of the regression function in the presence of missing data. In this paper, we present an alternative approach based on the theory of partial identifiability that considers a variety of milder assumptions to learn about the regression function. Using a university admissions dataset we illustrate how results can vary as a function of the assumptions that one is willing to make about the selection process.
期刊介绍:
The British Journal of Mathematical and Statistical Psychology publishes articles relating to areas of psychology which have a greater mathematical or statistical aspect of their argument than is usually acceptable to other journals including:
• mathematical psychology
• statistics
• psychometrics
• decision making
• psychophysics
• classification
• relevant areas of mathematics, computing and computer software
These include articles that address substantitive psychological issues or that develop and extend techniques useful to psychologists. New models for psychological processes, new approaches to existing data, critiques of existing models and improved algorithms for estimating the parameters of a model are examples of articles which may be favoured.