Shuanglin Jing, Ling Xue, Xuezhi Li, Fanqin Zeng, Junyuan Yang
{"title":"Age-structured modeling of COVID-19 dynamics: the role of treatment and vaccination in controlling the pandemic.","authors":"Shuanglin Jing, Ling Xue, Xuezhi Li, Fanqin Zeng, Junyuan Yang","doi":"10.1007/s00285-024-02168-8","DOIUrl":null,"url":null,"abstract":"<p><p>In addition to non-pharmaceutical interventions, antiviral drugs and vaccination are considered as the optimal solutions to control and eliminate the COVID-19 pandemic. It is necessary to couple within-host and between-host models to investigate the impact of treatment and vaccination. Hence, we propose an age-structured model, where the infection age is used to link the within-host viral dynamics and the disease dynamics at the population level. We conduct a detailed analysis of the local and global dynamics of the model, and the threshold dynamics are completely determined by the basic reproduction number <math><msub><mi>R</mi> <mn>0</mn></msub> </math> . Thus, the disease-free equilibrium is globally asymptotically stable and the disease eventually dies out when <math> <mrow><msub><mi>R</mi> <mn>0</mn></msub> <mo><</mo> <mn>1</mn></mrow> </math> ; the disease-free equilibrium is globally attractive when <math> <mrow><msub><mi>R</mi> <mn>0</mn></msub> <mo>=</mo> <mn>1</mn></mrow> </math> ; the disease is uniformly persistent, and the unique endemic equilibrium is globally asymptotically stable when <math> <mrow><msub><mi>R</mi> <mn>0</mn></msub> <mo>></mo> <mn>1</mn></mrow> </math> . The numerical simulation quantitatively studies the impact of the within-host viral dynamics on between-host transmission dynamics. The results show that the combination of antiviral drugs and vaccines can play a key role in mitigating the spread of COVID-19, but it is challenging to eliminate COVID-19 alone. To achieve the complete elimination of COVID-19, we need highly effective antiviral drugs and near-universal vaccine coverage.</p>","PeriodicalId":50148,"journal":{"name":"Journal of Mathematical Biology","volume":"90 1","pages":"12"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00285-024-02168-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In addition to non-pharmaceutical interventions, antiviral drugs and vaccination are considered as the optimal solutions to control and eliminate the COVID-19 pandemic. It is necessary to couple within-host and between-host models to investigate the impact of treatment and vaccination. Hence, we propose an age-structured model, where the infection age is used to link the within-host viral dynamics and the disease dynamics at the population level. We conduct a detailed analysis of the local and global dynamics of the model, and the threshold dynamics are completely determined by the basic reproduction number . Thus, the disease-free equilibrium is globally asymptotically stable and the disease eventually dies out when ; the disease-free equilibrium is globally attractive when ; the disease is uniformly persistent, and the unique endemic equilibrium is globally asymptotically stable when . The numerical simulation quantitatively studies the impact of the within-host viral dynamics on between-host transmission dynamics. The results show that the combination of antiviral drugs and vaccines can play a key role in mitigating the spread of COVID-19, but it is challenging to eliminate COVID-19 alone. To achieve the complete elimination of COVID-19, we need highly effective antiviral drugs and near-universal vaccine coverage.
期刊介绍:
The Journal of Mathematical Biology focuses on mathematical biology - work that uses mathematical approaches to gain biological understanding or explain biological phenomena.
Areas of biology covered include, but are not restricted to, cell biology, physiology, development, neurobiology, genetics and population genetics, population biology, ecology, behavioural biology, evolution, epidemiology, immunology, molecular biology, biofluids, DNA and protein structure and function. All mathematical approaches including computational and visualization approaches are appropriate.