William S Cuello, Sebastian J Schreiber, Jennifer R Gremer, Pete C Trimmer, D Lawrence Venable, Andrew Sih
{"title":"Shifting Precipitation Regimes Influence Optimal Germination Strategies and Population Dynamics in Bet-Hedging Desert Annuals.","authors":"William S Cuello, Sebastian J Schreiber, Jennifer R Gremer, Pete C Trimmer, D Lawrence Venable, Andrew Sih","doi":"10.1086/733105","DOIUrl":null,"url":null,"abstract":"<p><p>AbstractClimate change will affect both the mean and the variability in environmental conditions and may have major negative impacts on population densities in the future. For annual plants that already live in an extreme environment like the Sonoran Desert, keeping a fraction of their seeds dormant underground (for possibly years at a time) is critical to survive. Here, we consider how this form of bet hedging (i.e., delayed germination) for 10 Sonoran Desert annuals mediates responses to precipitation shifts. We use a demographic model parameterized with long-term field and precipitation data to explore how forecasted changes in precipitation impact annual plant species' population densities. We then examine how instantaneous evolution of optimal germination fractions in the shifted precipitation regimes bolsters population densities. Our results indicate that overall less rainfall and, to a lesser extent, increased variance in rainfall drive population levels down. Instantaneous evolution of optimal germination fractions in new regimes benefited species' populations only marginally, and only for small to moderate shifts in precipitation. Thus, even rapid evolution is unlikely to save populations experiencing larger shifts in precipitation. Finally, we predict that specialists that can capitalize on wet-year bonanzas or are water use efficient will be the most resilient to precipitation shifts as long as their seed survivorships are sufficiently high.</p>","PeriodicalId":50800,"journal":{"name":"American Naturalist","volume":"205 1","pages":"55-75"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Naturalist","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1086/733105","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
AbstractClimate change will affect both the mean and the variability in environmental conditions and may have major negative impacts on population densities in the future. For annual plants that already live in an extreme environment like the Sonoran Desert, keeping a fraction of their seeds dormant underground (for possibly years at a time) is critical to survive. Here, we consider how this form of bet hedging (i.e., delayed germination) for 10 Sonoran Desert annuals mediates responses to precipitation shifts. We use a demographic model parameterized with long-term field and precipitation data to explore how forecasted changes in precipitation impact annual plant species' population densities. We then examine how instantaneous evolution of optimal germination fractions in the shifted precipitation regimes bolsters population densities. Our results indicate that overall less rainfall and, to a lesser extent, increased variance in rainfall drive population levels down. Instantaneous evolution of optimal germination fractions in new regimes benefited species' populations only marginally, and only for small to moderate shifts in precipitation. Thus, even rapid evolution is unlikely to save populations experiencing larger shifts in precipitation. Finally, we predict that specialists that can capitalize on wet-year bonanzas or are water use efficient will be the most resilient to precipitation shifts as long as their seed survivorships are sufficiently high.
期刊介绍:
Since its inception in 1867, The American Naturalist has maintained its position as one of the world''s premier peer-reviewed publications in ecology, evolution, and behavior research. Its goals are to publish articles that are of broad interest to the readership, pose new and significant problems, introduce novel subjects, develop conceptual unification, and change the way people think. AmNat emphasizes sophisticated methodologies and innovative theoretical syntheses—all in an effort to advance the knowledge of organic evolution and other broad biological principles.