Custom-Made Ce-Mn Bimetallic Nanozyme for the Treatment of Intervertebral Disc Degeneration by Inhibiting Oxidative Stress and Modulating Macrophage M1/M2 Polarization.

IF 8.1 Q1 ENGINEERING, BIOMEDICAL
Biomaterials research Pub Date : 2024-12-23 eCollection Date: 2024-01-01 DOI:10.34133/bmr.0118
Jianwei Wu, Zhenhao Chen, Han Huang, Hongwei Wang, Xianghe Wang, Zian Lu, Haocheng Xu, Xiaosheng Ma, Feng Zeng, Hongli Wang
{"title":"Custom-Made Ce-Mn Bimetallic Nanozyme for the Treatment of Intervertebral Disc Degeneration by Inhibiting Oxidative Stress and Modulating Macrophage M1/M2 Polarization.","authors":"Jianwei Wu, Zhenhao Chen, Han Huang, Hongwei Wang, Xianghe Wang, Zian Lu, Haocheng Xu, Xiaosheng Ma, Feng Zeng, Hongli Wang","doi":"10.34133/bmr.0118","DOIUrl":null,"url":null,"abstract":"<p><p>Intervertebral disc degeneration (IDD)-induced lower back pain (LBP) brings heavy burden worldwide. In the degenerated intervertebral disc, there is an increase in the accumulation of reactive oxygen species (ROS) and the infiltration of M1 macrophages, which leads to abnormal local inflammatory microenvironment and exacerbates IDD. In this study, we developed a novel injectable polyethylene glycol (PEG)-capped cerium ion-manganese ion (Ce-Mn) bimetallic nanozyme (CeMn-PEG) with strong ROS scavenging and M2-type macrophage polarizing abilities to efficiently alleviate IDD. In vitro experiments demonstrated that CeMn-PEG effectively scavenged excess ROS in both nucleus pulposus (NP) and RAW264.7 cells. In addition, we found that CeMn-PEG markedly protected NP cells from H<sub>2</sub>O<sub>2</sub>-induced overproduction of inflammatory cytokines, excessive cell apoptosis and autophagy, and imbalance between extracellular matrix (ECM) degradation. Moreover, CeMn-PEG induced macrophages to transition from the M1 phenotype to the M2 phenotype and the increased M2-type macrophages could alleviate H<sub>2</sub>O<sub>2</sub>-induced ECM degradation and cell apoptosis in NP cells. In a puncture-induced mouse IDD model, CeMn-PEG treatment could effectively ameliorate the progression of disc degeneration and mitigate puncture-induced mechanical hyperalgesia. Thus, our study demonstrated the effectiveness of CeMn-PEG as a novel treatment strategy for the treatment of IDD and a range of other inflammatory diseases.</p>","PeriodicalId":93902,"journal":{"name":"Biomaterials research","volume":"28 ","pages":"0118"},"PeriodicalIF":8.1000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11665849/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/bmr.0118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Intervertebral disc degeneration (IDD)-induced lower back pain (LBP) brings heavy burden worldwide. In the degenerated intervertebral disc, there is an increase in the accumulation of reactive oxygen species (ROS) and the infiltration of M1 macrophages, which leads to abnormal local inflammatory microenvironment and exacerbates IDD. In this study, we developed a novel injectable polyethylene glycol (PEG)-capped cerium ion-manganese ion (Ce-Mn) bimetallic nanozyme (CeMn-PEG) with strong ROS scavenging and M2-type macrophage polarizing abilities to efficiently alleviate IDD. In vitro experiments demonstrated that CeMn-PEG effectively scavenged excess ROS in both nucleus pulposus (NP) and RAW264.7 cells. In addition, we found that CeMn-PEG markedly protected NP cells from H2O2-induced overproduction of inflammatory cytokines, excessive cell apoptosis and autophagy, and imbalance between extracellular matrix (ECM) degradation. Moreover, CeMn-PEG induced macrophages to transition from the M1 phenotype to the M2 phenotype and the increased M2-type macrophages could alleviate H2O2-induced ECM degradation and cell apoptosis in NP cells. In a puncture-induced mouse IDD model, CeMn-PEG treatment could effectively ameliorate the progression of disc degeneration and mitigate puncture-induced mechanical hyperalgesia. Thus, our study demonstrated the effectiveness of CeMn-PEG as a novel treatment strategy for the treatment of IDD and a range of other inflammatory diseases.

定制Ce-Mn双金属纳米酶通过抑制氧化应激和调节巨噬细胞M1/M2极化治疗椎间盘退变。
椎间盘退变(IDD)引起的腰痛(LBP)给世界各国带来了沉重的负担。退变椎间盘内活性氧(reactive oxygen species, ROS)积累增多,M1巨噬细胞浸润增多,导致局部炎症微环境异常,加重IDD。在这项研究中,我们开发了一种新型的可注射聚乙二醇(PEG)覆盖的铈锰离子(Ce-Mn)双金属纳米酶(CeMn-PEG),它具有很强的ROS清除能力和m2型巨噬细胞极化能力,可以有效缓解IDD。体外实验表明,CeMn-PEG能有效清除髓核(NP)和RAW264.7细胞中过量的ROS。此外,我们发现CeMn-PEG可以显著保护NP细胞免受h2o2诱导的炎症细胞因子过度产生、细胞过度凋亡和自噬以及细胞外基质(ECM)降解失衡的影响。此外,CeMn-PEG诱导巨噬细胞从M1表型向M2表型转变,增加的M2型巨噬细胞可以减轻h2o2诱导的NP细胞ECM降解和细胞凋亡。在针刺诱导的小鼠IDD模型中,CeMn-PEG治疗可以有效改善椎间盘退变的进展,减轻针刺诱导的机械痛觉过敏。因此,我们的研究证明了CeMn-PEG作为治疗IDD和一系列其他炎症性疾病的新治疗策略的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信