Therapeutic potential of placenta-derived stem cells cultivated on noggin-loaded nanochitosan/polypyrrole-alginate conductive scaffold to restore spinal cord injury.

IF 7.1 2区 医学 Q1 CELL & TISSUE ENGINEERING
Asma Manzari-Tavakoli, Amirhesam Babajani, Nasim Vousooghi, Ali Moghimi, Roghayeh Tarasi, Fahimeh Safaeinejad, Samira Norouzi, Soheyl Bahrami, Hassan Niknejad
{"title":"Therapeutic potential of placenta-derived stem cells cultivated on noggin-loaded nanochitosan/polypyrrole-alginate conductive scaffold to restore spinal cord injury.","authors":"Asma Manzari-Tavakoli, Amirhesam Babajani, Nasim Vousooghi, Ali Moghimi, Roghayeh Tarasi, Fahimeh Safaeinejad, Samira Norouzi, Soheyl Bahrami, Hassan Niknejad","doi":"10.1186/s13287-024-04104-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Spinal cord injury (SCI) is a severe and permanent nerve damage condition that poses significant burdens on individuals and society. Various therapeutic approaches have been explored to mitigate the consequences of SCI. Tissue engineering and regenerative medicine have emerged as a promising avenue for addressing this issue. This study aims to investigate the potential of a nanochitosan/polypyrrole-alginate conductive scaffold, loaded with the Noggin growth factor, an inhibitor of BMP-4 signaling, and human amniotic epithelial cells (hAECs), in promoting the regeneration of SCI in animal models.</p><p><strong>Methods: </strong>The attachment and distribution of isolated hAECs on a fabricated nanochitosan/polypyrrole-alginate conductive scaffold were assessed using SEM. Additionally, the neural differentiation of hAECs on the scaffold was investigated by analyzing the expression of specific neuronal (Calca, Fox3), oligodendrocyte (MBP), and astrocyte (GFAP) genes in vitro. To evaluate the combined effect of the scaffold and Noggin growth factor in animal models, a Noggin-loaded scaffold was designed using bioinformatics, and the loading and release capacity of Noggin were measured. For in vivo studies, rats underwent laminectomy and were transplanted with the scaffold, either alone or with Noggin and DII labeled- hAECs, at the T10-T11 level. Motor functions of the animal were evaluated using BBB scoring weekly in an open field for four weeks. Furthermore, the expression of neural genes and immunohistochemical tests were evaluated after four weeks.</p><p><strong>Results: </strong>hAECs exhibited uniform distribution and attachment to the scaffold. In vitro differentiation analyses showed increased expression of Calca, Fox3, MBP, and GFAP genes. Docking results indicated that Noggin could interact with chitosan nanoparticles through hydrogen bonds. The chitosan nanoparticles effectively loaded 22.6% of exposed Noggin, and the scaffold released 28.5% of the total incorporated Noggin. In vivo studies demonstrated that transplanting nanochitosan/polypyrrole-alginate conductive scaffolds with DII labeled-hAECs, with or without Noggin, improved motor functions in animal models. The assessment of gene expression patterns in transplanted hAECs revealed that neuronal (Calca, Fox3) and oligodendrocyte (MBP) genes in the injured spinal cord of the animal models were upregulated. Histopathological analysis showed a reduction in inflammation and glial scar formation, while neural fiber regeneration increased in the treated animals. Also, DII labeled-hAECs in the lesion site were alive after a period of four weeks.</p><p><strong>Conclusion: </strong>Based on these findings, it can be inferred that the integrative therapeutic effects of human amniotic epithelial cells, nanochitosan/polypyrrole-Alginate conductive scaffold, and Noggin (as BMP-4 signaling inhibitor) represents a promising and innovative approach in the field of translational medicine.</p>","PeriodicalId":21876,"journal":{"name":"Stem Cell Research & Therapy","volume":"15 1","pages":"497"},"PeriodicalIF":7.1000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11668012/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cell Research & Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13287-024-04104-5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Spinal cord injury (SCI) is a severe and permanent nerve damage condition that poses significant burdens on individuals and society. Various therapeutic approaches have been explored to mitigate the consequences of SCI. Tissue engineering and regenerative medicine have emerged as a promising avenue for addressing this issue. This study aims to investigate the potential of a nanochitosan/polypyrrole-alginate conductive scaffold, loaded with the Noggin growth factor, an inhibitor of BMP-4 signaling, and human amniotic epithelial cells (hAECs), in promoting the regeneration of SCI in animal models.

Methods: The attachment and distribution of isolated hAECs on a fabricated nanochitosan/polypyrrole-alginate conductive scaffold were assessed using SEM. Additionally, the neural differentiation of hAECs on the scaffold was investigated by analyzing the expression of specific neuronal (Calca, Fox3), oligodendrocyte (MBP), and astrocyte (GFAP) genes in vitro. To evaluate the combined effect of the scaffold and Noggin growth factor in animal models, a Noggin-loaded scaffold was designed using bioinformatics, and the loading and release capacity of Noggin were measured. For in vivo studies, rats underwent laminectomy and were transplanted with the scaffold, either alone or with Noggin and DII labeled- hAECs, at the T10-T11 level. Motor functions of the animal were evaluated using BBB scoring weekly in an open field for four weeks. Furthermore, the expression of neural genes and immunohistochemical tests were evaluated after four weeks.

Results: hAECs exhibited uniform distribution and attachment to the scaffold. In vitro differentiation analyses showed increased expression of Calca, Fox3, MBP, and GFAP genes. Docking results indicated that Noggin could interact with chitosan nanoparticles through hydrogen bonds. The chitosan nanoparticles effectively loaded 22.6% of exposed Noggin, and the scaffold released 28.5% of the total incorporated Noggin. In vivo studies demonstrated that transplanting nanochitosan/polypyrrole-alginate conductive scaffolds with DII labeled-hAECs, with or without Noggin, improved motor functions in animal models. The assessment of gene expression patterns in transplanted hAECs revealed that neuronal (Calca, Fox3) and oligodendrocyte (MBP) genes in the injured spinal cord of the animal models were upregulated. Histopathological analysis showed a reduction in inflammation and glial scar formation, while neural fiber regeneration increased in the treated animals. Also, DII labeled-hAECs in the lesion site were alive after a period of four weeks.

Conclusion: Based on these findings, it can be inferred that the integrative therapeutic effects of human amniotic epithelial cells, nanochitosan/polypyrrole-Alginate conductive scaffold, and Noggin (as BMP-4 signaling inhibitor) represents a promising and innovative approach in the field of translational medicine.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Stem Cell Research & Therapy
Stem Cell Research & Therapy CELL BIOLOGY-MEDICINE, RESEARCH & EXPERIMENTAL
CiteScore
13.20
自引率
8.00%
发文量
525
审稿时长
1 months
期刊介绍: Stem Cell Research & Therapy serves as a leading platform for translational research in stem cell therapies. This international, peer-reviewed journal publishes high-quality open-access research articles, with a focus on basic, translational, and clinical research in stem cell therapeutics and regenerative therapies. Coverage includes animal models and clinical trials. Additionally, the journal offers reviews, viewpoints, commentaries, and reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信