Ibrahim Taha Radwan, Ibrahim M El-Sherbiny, Abdelfattah M Selim, Nadia Hanafy Metwally
{"title":"Design, synthesis of some novel coumarins and their nanoformulations into lipid-chitosan nanocapsule as unique antimicrobial agents.","authors":"Ibrahim Taha Radwan, Ibrahim M El-Sherbiny, Abdelfattah M Selim, Nadia Hanafy Metwally","doi":"10.1038/s41598-024-79861-7","DOIUrl":null,"url":null,"abstract":"<p><p>Developing and creating novel antibiotics is one of the most important targets in treating infectious diseases. Novel coumarins were synthesized and characterized using different spectroscopic techniques such as Fourier Transform Infrared (FTIR), Nuclear magnetic resonance<sup>1</sup>H and <sup>13</sup>C and mass spectroscopy (MS). All of the synthesized compounds have been tested for activity and sensitivity against the microbial strains of B. subtilis, S. aureus, E. coli, P. aeruginosa, S. typhi, and C. albicans. All compounds showed substantial results against the tested microbes except S. typhi, which was not affected in any way by these coumarins. Exceptional results were shown by compounds 4, 6d, and 8b, which made them the best candidates for loading to the vicinity of nanostructure lipid carrier and coated by chitosan nanocapsule (NLC-Cs). Transmission electron microscope (TEM) confirmed spherical morphology with particles size less than 500 nm. Also, dynamic light scattering (DLS) were utilized to measure the average particle size (between 100 and 200 nm) and the stability assessed by zeta potential were found to be more positive confirming the chitosan encapsulation. Antimicrobial activity assessments were performed for both synthetic compounds and their NLCs analogues. The nanoformulation of 4-NLC-Cs, 6d-NLC-Cs, and 8b-NLC-Cs manifested unique biological results, especially 8b-NLC-Cs, which revealed powerful effects over all the tested organisms including S. typhi. The increasing biological effect of the drugs in their nanoscale form is reflected in the increasing value of inhibition zone diameter and suppressing the value of MIC to reach record levels like 8b-NLC-Cs disclosed MIC = 0.48 and 0.24 µg/ml against S. aureus and C. albicans, respectively, by the mean 8b-NLC-Cs nanoformulation suppressed the MIC by 65 folds of its initial value before nano. In continuation, it was proven that the compounds 4, 6d and 8b were found to make noticeable changes on the DNA-Gyrase levels with reduced IC<sub>50</sub> values particularly 8b showed excellent inhibitory effect with IC<sub>50</sub> = 4.56 µM. TEM was used to pursue the morphological changes that occur in bacterial cells of P. aeruginosa. The weakness of the cell wall in most bacterial cells treated with nanomaterials, 8b-NLC-Cs, has reached the point of the cell wall rupture and the cell components spilling out of the cells causing necrotic cell death.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"14 1","pages":"30598"},"PeriodicalIF":3.9000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11666591/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-79861-7","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Developing and creating novel antibiotics is one of the most important targets in treating infectious diseases. Novel coumarins were synthesized and characterized using different spectroscopic techniques such as Fourier Transform Infrared (FTIR), Nuclear magnetic resonance1H and 13C and mass spectroscopy (MS). All of the synthesized compounds have been tested for activity and sensitivity against the microbial strains of B. subtilis, S. aureus, E. coli, P. aeruginosa, S. typhi, and C. albicans. All compounds showed substantial results against the tested microbes except S. typhi, which was not affected in any way by these coumarins. Exceptional results were shown by compounds 4, 6d, and 8b, which made them the best candidates for loading to the vicinity of nanostructure lipid carrier and coated by chitosan nanocapsule (NLC-Cs). Transmission electron microscope (TEM) confirmed spherical morphology with particles size less than 500 nm. Also, dynamic light scattering (DLS) were utilized to measure the average particle size (between 100 and 200 nm) and the stability assessed by zeta potential were found to be more positive confirming the chitosan encapsulation. Antimicrobial activity assessments were performed for both synthetic compounds and their NLCs analogues. The nanoformulation of 4-NLC-Cs, 6d-NLC-Cs, and 8b-NLC-Cs manifested unique biological results, especially 8b-NLC-Cs, which revealed powerful effects over all the tested organisms including S. typhi. The increasing biological effect of the drugs in their nanoscale form is reflected in the increasing value of inhibition zone diameter and suppressing the value of MIC to reach record levels like 8b-NLC-Cs disclosed MIC = 0.48 and 0.24 µg/ml against S. aureus and C. albicans, respectively, by the mean 8b-NLC-Cs nanoformulation suppressed the MIC by 65 folds of its initial value before nano. In continuation, it was proven that the compounds 4, 6d and 8b were found to make noticeable changes on the DNA-Gyrase levels with reduced IC50 values particularly 8b showed excellent inhibitory effect with IC50 = 4.56 µM. TEM was used to pursue the morphological changes that occur in bacterial cells of P. aeruginosa. The weakness of the cell wall in most bacterial cells treated with nanomaterials, 8b-NLC-Cs, has reached the point of the cell wall rupture and the cell components spilling out of the cells causing necrotic cell death.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.