Comparative lipidomic and metabolomic profiling of mdx and severe mdx-apolipoprotein e-null mice.

IF 5.3 2区 医学 Q2 CELL BIOLOGY
Ram B Khattri, Abhinandan Batra, Zoe White, David Hammers, Terence E Ryan, Elisabeth R Barton, Pascal Bernatchez, Glenn A Walter
{"title":"Comparative lipidomic and metabolomic profiling of mdx and severe mdx-apolipoprotein e-null mice.","authors":"Ram B Khattri, Abhinandan Batra, Zoe White, David Hammers, Terence E Ryan, Elisabeth R Barton, Pascal Bernatchez, Glenn A Walter","doi":"10.1186/s13395-024-00368-w","DOIUrl":null,"url":null,"abstract":"<p><p>Despite its notoriously mild phenotype, the dystrophin-deficient mdx mouse is the most common model of Duchenne muscular dystrophy (DMD). By mimicking a human DMD-associated metabolic comorbidity, hyperlipidemia, in mdx mice by inactivating the apolipoprotein E gene (mdx-ApoE) we previously reported severe myofiber damage exacerbation via histology with large fibro-fatty infiltrates and phenotype humanization with ambulation dysfunction when fed a cholesterol- and triglyceride-rich Western diet (mdx-ApoE<sup>W</sup>). Herein, we performed comparative lipidomic and metabolomic analyses of muscle, liver and serum samples from mdx and mdx-ApoE<sup>W</sup> mice using solution and high-resolution-magic angle spinning (HR-MAS) <sup>1</sup>H-NMR spectroscopy. Compared to mdx and regular chow-fed mdx-ApoE mice, we observed an order of magnitude increase in lipid deposition in gastrocnemius muscle of mdx-ApoE<sup>W</sup> mice including 11-fold elevations in -CH<sub>3</sub> and -CH<sub>2</sub> lipids, along with pronounced elevations in serum cholesterol, fatty acid, triglyceride and phospholipids. Hepatic lipids were also elevated but did not correlate with the extent of muscle lipid infiltration or differences in serum lipids. This study provides the first lipometabolomic signature of severe mdx lesions exacerbated by high circulating lipids and lends credence to claims that the liver, the main regulator of whole-body lipoprotein metabolism, may play only a minor role in this process.</p>","PeriodicalId":21747,"journal":{"name":"Skeletal Muscle","volume":"14 1","pages":"36"},"PeriodicalIF":5.3000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11664822/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Skeletal Muscle","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13395-024-00368-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Despite its notoriously mild phenotype, the dystrophin-deficient mdx mouse is the most common model of Duchenne muscular dystrophy (DMD). By mimicking a human DMD-associated metabolic comorbidity, hyperlipidemia, in mdx mice by inactivating the apolipoprotein E gene (mdx-ApoE) we previously reported severe myofiber damage exacerbation via histology with large fibro-fatty infiltrates and phenotype humanization with ambulation dysfunction when fed a cholesterol- and triglyceride-rich Western diet (mdx-ApoEW). Herein, we performed comparative lipidomic and metabolomic analyses of muscle, liver and serum samples from mdx and mdx-ApoEW mice using solution and high-resolution-magic angle spinning (HR-MAS) 1H-NMR spectroscopy. Compared to mdx and regular chow-fed mdx-ApoE mice, we observed an order of magnitude increase in lipid deposition in gastrocnemius muscle of mdx-ApoEW mice including 11-fold elevations in -CH3 and -CH2 lipids, along with pronounced elevations in serum cholesterol, fatty acid, triglyceride and phospholipids. Hepatic lipids were also elevated but did not correlate with the extent of muscle lipid infiltration or differences in serum lipids. This study provides the first lipometabolomic signature of severe mdx lesions exacerbated by high circulating lipids and lends credence to claims that the liver, the main regulator of whole-body lipoprotein metabolism, may play only a minor role in this process.

mdx和重度mdx载脂蛋白e缺失小鼠的比较脂质组学和代谢组学分析。
尽管其众所周知的轻度表型,肌营养不良蛋白缺陷mdx小鼠是杜氏肌营养不良症(DMD)最常见的模型。通过失活载脂蛋白E基因(mdx- apoe),我们在mdx小鼠中模拟人类dmd相关的代谢合并症,高脂血症,我们之前报道了在喂食富含胆固醇和甘油三酯的西方饮食(mdx- apoew)时,通过组织学表现出大量纤维脂肪浸润和表现出行走功能障碍的人源化,严重的肌纤维损伤加剧。在此,我们使用溶液和高分辨率魔角旋转(HR-MAS) 1H-NMR光谱对mdx和mdx- apoew小鼠的肌肉、肝脏和血清样本进行了比较脂质组学和代谢组学分析。与mdx和正常喂养的mdx- apoe小鼠相比,我们观察到mdx- apoe小鼠腓肠肌脂质沉积增加了一个数量级,包括-CH3和-CH2脂质增加了11倍,同时血清胆固醇、脂肪酸、甘油三酯和磷脂明显升高。肝脏脂质也升高,但与肌脂浸润程度或血清脂质差异无关。该研究首次提供了由高循环脂质加剧的严重mdx病变的脂肪代谢组学特征,并证实了肝脏作为全身脂蛋白代谢的主要调节者在这一过程中可能只起次要作用的说法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Skeletal Muscle
Skeletal Muscle CELL BIOLOGY-
CiteScore
9.10
自引率
0.00%
发文量
25
审稿时长
12 weeks
期刊介绍: The only open access journal in its field, Skeletal Muscle publishes novel, cutting-edge research and technological advancements that investigate the molecular mechanisms underlying the biology of skeletal muscle. Reflecting the breadth of research in this area, the journal welcomes manuscripts about the development, metabolism, the regulation of mass and function, aging, degeneration, dystrophy and regeneration of skeletal muscle, with an emphasis on understanding adult skeletal muscle, its maintenance, and its interactions with non-muscle cell types and regulatory modulators. Main areas of interest include: -differentiation of skeletal muscle- atrophy and hypertrophy of skeletal muscle- aging of skeletal muscle- regeneration and degeneration of skeletal muscle- biology of satellite and satellite-like cells- dystrophic degeneration of skeletal muscle- energy and glucose homeostasis in skeletal muscle- non-dystrophic genetic diseases of skeletal muscle, such as Spinal Muscular Atrophy and myopathies- maintenance of neuromuscular junctions- roles of ryanodine receptors and calcium signaling in skeletal muscle- roles of nuclear receptors in skeletal muscle- roles of GPCRs and GPCR signaling in skeletal muscle- other relevant aspects of skeletal muscle biology. In addition, articles on translational clinical studies that address molecular and cellular mechanisms of skeletal muscle will be published. Case reports are also encouraged for submission. Skeletal Muscle reflects the breadth of research on skeletal muscle and bridges gaps between diverse areas of science for example cardiac cell biology and neurobiology, which share common features with respect to cell differentiation, excitatory membranes, cell-cell communication, and maintenance. Suitable articles are model and mechanism-driven, and apply statistical principles where appropriate; purely descriptive studies are of lesser interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信