{"title":"In silico analysis of trehalose biosynthesis genes provides clues to reveal its roles in Avicennia marina adaptation to tidal submergence.","authors":"Ling-Yu Song, Zhao-Yu Guo, Jin-Yu Liu, Chao-Qun Xu, Jing Li, Lu-Dan Zhang, Shi-Wei Song, Hai-Lei Zheng","doi":"10.1016/j.plaphy.2024.109420","DOIUrl":null,"url":null,"abstract":"<p><p>Trehalose has an important function for alleviating various abiotic stress in plants. Nevertheless, the functional and evolutionary characteristics of trehalose biosynthesis genes in mangrove plants is not documented. Here, using typical mangrove Avicennia marina, we found the trehalose content decreased in the roots and leaves and T6P increased significantly in the leaves under tidal submergence. Then, the basic physicochemical properties and gene structure of trehalose biosynthesis genes (AmTPS and AmTPP), and the conserved domain and motifs of AmTPS and AmTPP proteins were analyzed. The collinearity analysis and Ka/Ks values indicated that AmTPS and AmTPP are evolutionarily conserved. Tissue-specific expression profiling showed that most AmTPS and AmTPP genes have tissue specificity. RNA-Seq analysis showed that five AmTPS genes were markedly up-regulated in A. marina treated with tidal submergence. Subcellular localization analysis revealed three genes including AmTPS10B, AmTPS11A and AmTPS11C out of these five up-regulated AmTPS genes work in plasma membrane, cytoplasm and nucleus. Finally, integrative analysis of bioinformatics and RNA-Seq analysis were performed to excavate transcription factors that may regulate AmTPS and AmTPP genes in A. marina response to submergence. Taken together, these findings provide new insights into the response to tidal submergence in A. marina at the aspect of trehalose.</p>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"219 ","pages":"109420"},"PeriodicalIF":6.1000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.plaphy.2024.109420","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Trehalose has an important function for alleviating various abiotic stress in plants. Nevertheless, the functional and evolutionary characteristics of trehalose biosynthesis genes in mangrove plants is not documented. Here, using typical mangrove Avicennia marina, we found the trehalose content decreased in the roots and leaves and T6P increased significantly in the leaves under tidal submergence. Then, the basic physicochemical properties and gene structure of trehalose biosynthesis genes (AmTPS and AmTPP), and the conserved domain and motifs of AmTPS and AmTPP proteins were analyzed. The collinearity analysis and Ka/Ks values indicated that AmTPS and AmTPP are evolutionarily conserved. Tissue-specific expression profiling showed that most AmTPS and AmTPP genes have tissue specificity. RNA-Seq analysis showed that five AmTPS genes were markedly up-regulated in A. marina treated with tidal submergence. Subcellular localization analysis revealed three genes including AmTPS10B, AmTPS11A and AmTPS11C out of these five up-regulated AmTPS genes work in plasma membrane, cytoplasm and nucleus. Finally, integrative analysis of bioinformatics and RNA-Seq analysis were performed to excavate transcription factors that may regulate AmTPS and AmTPP genes in A. marina response to submergence. Taken together, these findings provide new insights into the response to tidal submergence in A. marina at the aspect of trehalose.
期刊介绍:
Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement.
Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB.
Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.