Xin-Yu Zhang, Lan-Lan Yu, Wei-Yi Wang, Gui-Quan Sun, Jian-Cheng Lv, Tao Zhou, Quan-Hui Liu
{"title":"Estimating the time-varying effective reproduction number via Cycle Threshold-based Transformer.","authors":"Xin-Yu Zhang, Lan-Lan Yu, Wei-Yi Wang, Gui-Quan Sun, Jian-Cheng Lv, Tao Zhou, Quan-Hui Liu","doi":"10.1371/journal.pcbi.1012694","DOIUrl":null,"url":null,"abstract":"<p><p>Monitoring the spread of infectious disease is essential to design and adjust the interventions timely for the prevention of the epidemic outbreak and safeguarding the public health. The governments have generally adopted the incidence-based statistical method to estimate the time-varying effective reproduction number Rt and evaluate the transmission ability of epidemics. However, this method exhibits biases arising from the reported incidence data and assumes the generation interval distribution which is not available at the early stage of epidemic. Recent studies showed that the viral loads characterized by cycle threshold (Ct) of the infected populations evolving throughout the course of epidemic and providing a possibility to infer the epidemic trajectory. In this work, we propose the Cycle Threshold-based Transformer (Ct-Transformer) to estimate Rt. We find the supervised learning of Ct-Transformer outperforms the traditional incidence-based statistic and Ct-based Rt estimating methods, and more importantly Ct-Transformer is robustness to the detection resources. Further, we apply the proposed model to self-supervised pre-training tasks and obtain excellent fine-tuning performance, which attains comparable performance with the supervised Ct-Transformer, verified by both the synthetic and real-world datasets. We demonstrate that the Ct-based deep learning method can improve the real-time estimates of Rt, enabling more easily adapted to the track of the newly emerged epidemic.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":"20 12","pages":"e1012694"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1012694","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Monitoring the spread of infectious disease is essential to design and adjust the interventions timely for the prevention of the epidemic outbreak and safeguarding the public health. The governments have generally adopted the incidence-based statistical method to estimate the time-varying effective reproduction number Rt and evaluate the transmission ability of epidemics. However, this method exhibits biases arising from the reported incidence data and assumes the generation interval distribution which is not available at the early stage of epidemic. Recent studies showed that the viral loads characterized by cycle threshold (Ct) of the infected populations evolving throughout the course of epidemic and providing a possibility to infer the epidemic trajectory. In this work, we propose the Cycle Threshold-based Transformer (Ct-Transformer) to estimate Rt. We find the supervised learning of Ct-Transformer outperforms the traditional incidence-based statistic and Ct-based Rt estimating methods, and more importantly Ct-Transformer is robustness to the detection resources. Further, we apply the proposed model to self-supervised pre-training tasks and obtain excellent fine-tuning performance, which attains comparable performance with the supervised Ct-Transformer, verified by both the synthetic and real-world datasets. We demonstrate that the Ct-based deep learning method can improve the real-time estimates of Rt, enabling more easily adapted to the track of the newly emerged epidemic.
期刊介绍:
PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery.
Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines.
Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights.
Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology.
Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.