{"title":"Estimating the distribution of parameters in differential equations with repeated cross-sectional data.","authors":"Hyeontae Jo, Sung Woong Cho, Hyung Ju Hwang","doi":"10.1371/journal.pcbi.1012696","DOIUrl":null,"url":null,"abstract":"<p><p>Differential equations are pivotal in modeling and understanding the dynamics of various systems, as they offer insights into their future states through parameter estimation fitted to time series data. In fields such as economy, politics, and biology, the observation data points in the time series are often independently obtained (i.e., Repeated Cross-Sectional (RCS) data). RCS data showed that traditional methods for parameter estimation in differential equations, such as using mean values of RCS data over time, Gaussian Process-based trajectory generation, and Bayesian-based methods, have limitations in estimating the shape of parameter distributions, leading to a significant loss of data information. To address this issue, this study proposes a novel method called Estimation of Parameter Distribution (EPD) that provides accurate distribution of parameters without loss of data information. EPD operates in three main steps: generating synthetic time trajectories by randomly selecting observed values at each time point, estimating parameters of a differential equation that minimizes the discrepancy between these trajectories and the true solution of the equation, and selecting the parameters depending on the scale of discrepancy. We then evaluated the performance of EPD across several models, including exponential growth, logistic population models, and target cell-limited models with delayed virus production, thereby demonstrating the ability of the proposed method in capturing the shape of parameter distributions. Furthermore, we applied EPD to real-world datasets, capturing various shapes of parameter distributions over a normal distribution. These results address the heterogeneity within systems, marking a substantial progression in accurately modeling systems using RCS data. Therefore, EPD marks a significant advancement in accurately modeling systems with RCS data, realizing a deeper understanding of system dynamics and parameter variability.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":"20 12","pages":"e1012696"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1012696","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Differential equations are pivotal in modeling and understanding the dynamics of various systems, as they offer insights into their future states through parameter estimation fitted to time series data. In fields such as economy, politics, and biology, the observation data points in the time series are often independently obtained (i.e., Repeated Cross-Sectional (RCS) data). RCS data showed that traditional methods for parameter estimation in differential equations, such as using mean values of RCS data over time, Gaussian Process-based trajectory generation, and Bayesian-based methods, have limitations in estimating the shape of parameter distributions, leading to a significant loss of data information. To address this issue, this study proposes a novel method called Estimation of Parameter Distribution (EPD) that provides accurate distribution of parameters without loss of data information. EPD operates in three main steps: generating synthetic time trajectories by randomly selecting observed values at each time point, estimating parameters of a differential equation that minimizes the discrepancy between these trajectories and the true solution of the equation, and selecting the parameters depending on the scale of discrepancy. We then evaluated the performance of EPD across several models, including exponential growth, logistic population models, and target cell-limited models with delayed virus production, thereby demonstrating the ability of the proposed method in capturing the shape of parameter distributions. Furthermore, we applied EPD to real-world datasets, capturing various shapes of parameter distributions over a normal distribution. These results address the heterogeneity within systems, marking a substantial progression in accurately modeling systems using RCS data. Therefore, EPD marks a significant advancement in accurately modeling systems with RCS data, realizing a deeper understanding of system dynamics and parameter variability.
期刊介绍:
PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery.
Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines.
Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights.
Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology.
Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.