{"title":"Rationalization Progress of Novel Drug Delivery System for Intra-Periodontal Pockets Against Periodontitis.","authors":"Rishabh Maurya, Prashant Kumar, Gaurav Tiwari","doi":"10.2174/0122117385334802241122094148","DOIUrl":null,"url":null,"abstract":"<p><p>Periodontitis (PD) is a pathological condition that results in chronic swelling in the tissue around a tooth, which results in advanced periodontal structural injury to the encircling soft and hard tissues with eventual exfoliation and movement of teeth. It affects around 60% of the world's population, indicating a relatively high prevalence. Therefore, the discovery of efficient therapeutic interventions for dental disorders is a primary goal of the health sciences, and periodontitis is a significant public health problem. Currently, perioceutics plays a revolutionary role in periodontal therapy with the introduction of both systemic and local route administration of therapeutic drugs as supportive therapy to SRP (Scaling and Root Planning). The key to effective periodontal treatment is the selection of the proper antibacterial agent and the local route of medication delivery. The items mentioned, including irrigation systems, gels, fibers, films, thin strips, microvesicles, zero-dimensional nanomaterial, and moderate-dose biocide agents, reflect the innovative site-specific drug delivery available in the sector, resulting in the fulfillment of antimicrobial substances to sites of periodontal disease with low to non-existent negative impacts on other bodily systems. The current report seeks to present the most recent technologies in local biomaterial-based delivery with different properties that play a significant role in gum disease so that the practitioners are able to select appropriate bioactive agents for LDDS that are custom-tailored for a given clinical condition, identify present obstacles, and determine the future research opportunities.</p>","PeriodicalId":19774,"journal":{"name":"Pharmaceutical nanotechnology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0122117385334802241122094148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0
Abstract
Periodontitis (PD) is a pathological condition that results in chronic swelling in the tissue around a tooth, which results in advanced periodontal structural injury to the encircling soft and hard tissues with eventual exfoliation and movement of teeth. It affects around 60% of the world's population, indicating a relatively high prevalence. Therefore, the discovery of efficient therapeutic interventions for dental disorders is a primary goal of the health sciences, and periodontitis is a significant public health problem. Currently, perioceutics plays a revolutionary role in periodontal therapy with the introduction of both systemic and local route administration of therapeutic drugs as supportive therapy to SRP (Scaling and Root Planning). The key to effective periodontal treatment is the selection of the proper antibacterial agent and the local route of medication delivery. The items mentioned, including irrigation systems, gels, fibers, films, thin strips, microvesicles, zero-dimensional nanomaterial, and moderate-dose biocide agents, reflect the innovative site-specific drug delivery available in the sector, resulting in the fulfillment of antimicrobial substances to sites of periodontal disease with low to non-existent negative impacts on other bodily systems. The current report seeks to present the most recent technologies in local biomaterial-based delivery with different properties that play a significant role in gum disease so that the practitioners are able to select appropriate bioactive agents for LDDS that are custom-tailored for a given clinical condition, identify present obstacles, and determine the future research opportunities.
牙周炎(PD)是一种导致牙齿周围组织慢性肿胀的病理状态,其结果是对周围软硬组织的晚期牙周结构损伤,最终导致牙齿脱落和移动。它影响着世界上约60%的人口,表明患病率相对较高。因此,发现有效的牙齿疾病治疗干预措施是健康科学的主要目标,牙周炎是一个重要的公共卫生问题。目前,牙周药物在牙周治疗中发挥着革命性的作用,引入了全身和局部途径的治疗药物作为支持治疗的SRP (Scaling and Root Planning)。有效牙周治疗的关键是选择合适的抗菌药物和局部给药途径。所提到的项目,包括灌溉系统、凝胶、纤维、薄膜、薄条、微泡、零维纳米材料和中剂量杀菌剂,反映了该部门现有的创新的针对特定部位的药物输送,从而实现了将抗菌物质输送到牙周病部位,对其他身体系统的负面影响很小甚至不存在。本报告旨在介绍在牙龈疾病中发挥重要作用的具有不同特性的局部生物材料递送的最新技术,以便从业者能够为LDDS选择适合特定临床条件的生物活性药物,确定当前的障碍,并确定未来的研究机会。
期刊介绍:
Pharmaceutical Nanotechnology publishes original manuscripts, full-length/mini reviews, thematic issues, rapid technical notes and commentaries that provide insights into the synthesis, characterisation and pharmaceutical (or diagnostic) application of materials at the nanoscale. The nanoscale is defined as a size range of below 1 µm. Scientific findings related to micro and macro systems with functionality residing within features defined at the nanoscale are also within the scope of the journal. Manuscripts detailing the synthesis, exhaustive characterisation, biological evaluation, clinical testing and/ or toxicological assessment of nanomaterials are of particular interest to the journal’s readership. Articles should be self contained, centred around a well founded hypothesis and should aim to showcase the pharmaceutical/ diagnostic implications of the nanotechnology approach. Manuscripts should aim, wherever possible, to demonstrate the in vivo impact of any nanotechnological intervention. As reducing a material to the nanoscale is capable of fundamentally altering the material’s properties, the journal’s readership is particularly interested in new characterisation techniques and the advanced properties that originate from this size reduction. Both bottom up and top down approaches to the realisation of nanomaterials lie within the scope of the journal.