Formulation, Development, and Optimization of Fast Dissolving Tablets Containing Tapentadol Hydrochloride.

Q2 Pharmacology, Toxicology and Pharmaceutics
Chandrashekar Thalluri, Mallikarjun Vasam, Rajkumar Jampala, Shanmugarathinam Alagarsamy, Anubhav Dubey, Amit Lather, Tanuj Hooda
{"title":"Formulation, Development, and Optimization of Fast Dissolving Tablets Containing Tapentadol Hydrochloride.","authors":"Chandrashekar Thalluri, Mallikarjun Vasam, Rajkumar Jampala, Shanmugarathinam Alagarsamy, Anubhav Dubey, Amit Lather, Tanuj Hooda","doi":"10.2174/0122117385350217241122151638","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Tapentadol hydrochloride is a potent analgesic commonly used to manage moderate to severe pain. Rapidly dissolving tablets of Tapentadol offer a significant advantage in enhancing patient compliance by providing quick pain relief. The development of fast-dissolving tablets (FDTs) requires careful consideration of formulation parameters to achieve optimal disintegration and dissolution profiles. In this study, the aim was to fabricate Tapentadol FDTs by selecting suitable super disintegrating agents such as croscarmellose sodium and crospovidone, which serve as two independent variables. The direct compression method was employed to formulate nine different Tapentadol hydrochloride formulations (TH1 to TH9).</p><p><strong>Materials and methods: </strong>The study utilized Design-Expert® software version 13.0 and the Response Surface Methodology (RSM) for the optimization of Tapentadol FDTs. The formulations were prepared using the direct compression method with varying concentrations of the super disintegrants, croscarmellose sodium, and crospovidone. The primary response variables considered in this optimization study included disintegration time (Y1), percentage drug release at 15 minutes (Q15, Y2), and percentage drug release at 30 minutes (Q30, Y3). All pre-compressional and postcompressional parameters were evaluated for each formulation, along with in vitro dissolution studies. Furthermore, DD Solver, a statistical tool, was employed to determine the kinetics of drug release and the release order mechanism based on regression coefficient value (r²), Akaike Information Criterion (AIC), and Model Selection Criteria (MSC).</p><p><strong>Results: </strong>The evaluation studies indicated that the TH5 formulation exhibited the most rapid disintegration time and the highest drug release percentage within the specified time frame. The super disintegrants used demonstrated a significant impact on the response variables, notably enhancing the solubility and dissolution rate of Tapentadol hydrochloride. Based on the exponent release (n) value, the study concluded that the TH5 formulation followed a first-order release kinetics and Fickian diffusion mechanism for drug release. Stability studies were performed following the International Council for Harmonization (ICH) guidelines to assess the shelf-life of the optimized formulation. The ANOVA data revealed that the p-value was greater than 0.05, indicating no significant differences during the storage period. Additionally, a similarity factor (f2) analysis was conducted to compare the optimized formulation with the marketed formulation (Tydol 100 mg).</p><p><strong>Discussion: </strong>The findings highlight the crucial role of super disintegrants in fast-dissolving tablet formulation, significantly impacting disintegration time and dissolution profile. The TH5 formulation excelled in rapid disintegration and drug release, optimized using RSM and Design-Expert software, with statistical analysis confirming the Fickian diffusion mechanism for drug release.</p><p><strong>Conclusion: </strong>The study successfully developed and optimized Tapentadol fast-dissolving tablets using direct compression and response surface methodology. The TH5 formulation showed rapid disintegration and optimal drug release, with stability confirmed under ICH conditions. This highlights the importance of super disintegrants in FDT formulation for rapid action and patient compliance.</p>","PeriodicalId":19774,"journal":{"name":"Pharmaceutical nanotechnology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0122117385350217241122151638","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Tapentadol hydrochloride is a potent analgesic commonly used to manage moderate to severe pain. Rapidly dissolving tablets of Tapentadol offer a significant advantage in enhancing patient compliance by providing quick pain relief. The development of fast-dissolving tablets (FDTs) requires careful consideration of formulation parameters to achieve optimal disintegration and dissolution profiles. In this study, the aim was to fabricate Tapentadol FDTs by selecting suitable super disintegrating agents such as croscarmellose sodium and crospovidone, which serve as two independent variables. The direct compression method was employed to formulate nine different Tapentadol hydrochloride formulations (TH1 to TH9).

Materials and methods: The study utilized Design-Expert® software version 13.0 and the Response Surface Methodology (RSM) for the optimization of Tapentadol FDTs. The formulations were prepared using the direct compression method with varying concentrations of the super disintegrants, croscarmellose sodium, and crospovidone. The primary response variables considered in this optimization study included disintegration time (Y1), percentage drug release at 15 minutes (Q15, Y2), and percentage drug release at 30 minutes (Q30, Y3). All pre-compressional and postcompressional parameters were evaluated for each formulation, along with in vitro dissolution studies. Furthermore, DD Solver, a statistical tool, was employed to determine the kinetics of drug release and the release order mechanism based on regression coefficient value (r²), Akaike Information Criterion (AIC), and Model Selection Criteria (MSC).

Results: The evaluation studies indicated that the TH5 formulation exhibited the most rapid disintegration time and the highest drug release percentage within the specified time frame. The super disintegrants used demonstrated a significant impact on the response variables, notably enhancing the solubility and dissolution rate of Tapentadol hydrochloride. Based on the exponent release (n) value, the study concluded that the TH5 formulation followed a first-order release kinetics and Fickian diffusion mechanism for drug release. Stability studies were performed following the International Council for Harmonization (ICH) guidelines to assess the shelf-life of the optimized formulation. The ANOVA data revealed that the p-value was greater than 0.05, indicating no significant differences during the storage period. Additionally, a similarity factor (f2) analysis was conducted to compare the optimized formulation with the marketed formulation (Tydol 100 mg).

Discussion: The findings highlight the crucial role of super disintegrants in fast-dissolving tablet formulation, significantly impacting disintegration time and dissolution profile. The TH5 formulation excelled in rapid disintegration and drug release, optimized using RSM and Design-Expert software, with statistical analysis confirming the Fickian diffusion mechanism for drug release.

Conclusion: The study successfully developed and optimized Tapentadol fast-dissolving tablets using direct compression and response surface methodology. The TH5 formulation showed rapid disintegration and optimal drug release, with stability confirmed under ICH conditions. This highlights the importance of super disintegrants in FDT formulation for rapid action and patient compliance.

盐酸他他多速溶片的研制与优化。
背景:盐酸他他多是一种强效镇痛药,常用于治疗中度至重度疼痛。快速溶解的他他多片提供显著的优势,提高患者的依从性,提供快速缓解疼痛。速溶片的开发需要仔细考虑处方参数,以达到最佳的崩解和溶出度。本研究的目的是通过选择合适的超崩解剂如交联棉糖钠和交联维酮作为两个自变量来制备他他多fdt。采用直接加压法制备了9种不同的盐酸他他多尔(TH1 ~ TH9)制剂。材料和方法:本研究采用Design-Expert®软件13.0版,采用响应面法(RSM)对他他多fdt进行优化。采用不同浓度的超崩解剂、交联棉糖钠和交联维酮直接压缩法制备配方。本优化研究考虑的主要响应变量包括崩解时间(Y1)、15分钟释药百分比(Q15, Y2)和30分钟释药百分比(Q30, Y3)。对每种制剂的所有压缩前和压缩后参数进行评估,并进行体外溶出研究。基于回归系数值(r²)、Akaike信息准则(AIC)和模型选择准则(MSC),采用DD Solver统计工具确定药物释放动力学和释放顺序机制。结果:评价研究表明,该制剂崩解时间最快,规定时限内释药率最高。所使用的强力崩解剂对反应变量有显著影响,显著提高了盐酸他他他多的溶解度和溶出率。根据指数释放(n)值,研究认为TH5制剂符合一级释放动力学和菲克扩散机制。稳定性研究是按照国际协调理事会(ICH)的指导方针进行的,以评估优化制剂的保质期。方差分析数据显示,p值大于0.05,说明在贮存期间差异不显著。并进行相似因子(f2)分析,将优化后的配方与市售的Tydol 100mg进行比较。讨论:研究结果强调了超级崩解剂在速溶片配方中的关键作用,显著影响崩解时间和溶出谱。采用RSM和Design-Expert软件对处方进行优化,结果表明TH5具有快速崩解和药物释放的特点,经统计分析证实其具有Fickian扩散释药机制。结论:采用直接压缩法和响应面法,研制并优化了他他多速溶片。该制剂崩解迅速,释药效果最佳,在ICH条件下具有稳定性。这突出了超级崩解剂在FDT配方中对快速行动和患者依从性的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pharmaceutical nanotechnology
Pharmaceutical nanotechnology Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
4.20
自引率
0.00%
发文量
46
期刊介绍: Pharmaceutical Nanotechnology publishes original manuscripts, full-length/mini reviews, thematic issues, rapid technical notes and commentaries that provide insights into the synthesis, characterisation and pharmaceutical (or diagnostic) application of materials at the nanoscale. The nanoscale is defined as a size range of below 1 µm. Scientific findings related to micro and macro systems with functionality residing within features defined at the nanoscale are also within the scope of the journal. Manuscripts detailing the synthesis, exhaustive characterisation, biological evaluation, clinical testing and/ or toxicological assessment of nanomaterials are of particular interest to the journal’s readership. Articles should be self contained, centred around a well founded hypothesis and should aim to showcase the pharmaceutical/ diagnostic implications of the nanotechnology approach. Manuscripts should aim, wherever possible, to demonstrate the in vivo impact of any nanotechnological intervention. As reducing a material to the nanoscale is capable of fundamentally altering the material’s properties, the journal’s readership is particularly interested in new characterisation techniques and the advanced properties that originate from this size reduction. Both bottom up and top down approaches to the realisation of nanomaterials lie within the scope of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信