Current Updates on Nanotechnology-based Drug Delivery Platforms for Treating Alzheimer's with Herbal Drugs.

Q2 Pharmacology, Toxicology and Pharmaceutics
Shakeel Ahmed Ansari, Asim Muhammad Alshanberi, Rukhsana Satar, Jakleen Abujamai, Ghulam Md Ashraf
{"title":"Current Updates on Nanotechnology-based Drug Delivery Platforms for Treating Alzheimer's with Herbal Drugs.","authors":"Shakeel Ahmed Ansari, Asim Muhammad Alshanberi, Rukhsana Satar, Jakleen Abujamai, Ghulam Md Ashraf","doi":"10.2174/0122117385335626241204165702","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is an irreversible brain disorder that led to memory loss and disrupts daily life. Earlier strategies to treat AD such as acetylcholinesterase inhibitor (AChEI) drugs are not showing effectiveness due to the inability to cross the blood-brain barrier. Moreover, traditional AChEI provides limited efficacy in terms of bioavailability and solubility for treating AD treatment. Many of the current drugs such as donepezil taken to treat the disease exhibited harmful side effects. Hence, researchers are keen to find the alternative effective therapeutic agents for treating AD. This review summarizes the recent advancement in nanotechnology-based drug delivery systems of herbal drugs such as Curcumin, Ginkgo biloba, Salvia officinalis, etc for the prevention and cure of AD. Herbal drugs proved useful in treating neuronal disorders such as AD but exhibited some limitations like low bioavailability via oral drug delivery. Such limitations were overcome by tagging these drugs by nanoparticles which enables them to cross the blood-brain barrier and offer the delivery of greater concentration of herbal drugs to the brain. Inorganic nanoparticle-based drugdelivery systems such as gold nanoparticles and magnetic nanoparticles, organic nanoparticulate systems like polymeric micelles and dendrimers, and solid polymeric nanoparticles were some of the effective methods that have earlier shown potential for enhancing the delivery of herbal drugs to the brain. Long-term repeated injection of drugs loaded on nanomaterials can lead to the accumulation of nanomaterials in the body without timely and effective degradation which can cause serious issues to the brain. Hence, nanotechnology-based strategies should involve the formulation of nontoxic nanoparticles in such a way that they can significantly transport the drugs across the BBB followed by effective degradation of nanoparticles.</p>","PeriodicalId":19774,"journal":{"name":"Pharmaceutical nanotechnology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0122117385335626241204165702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

Abstract

Alzheimer's disease (AD) is an irreversible brain disorder that led to memory loss and disrupts daily life. Earlier strategies to treat AD such as acetylcholinesterase inhibitor (AChEI) drugs are not showing effectiveness due to the inability to cross the blood-brain barrier. Moreover, traditional AChEI provides limited efficacy in terms of bioavailability and solubility for treating AD treatment. Many of the current drugs such as donepezil taken to treat the disease exhibited harmful side effects. Hence, researchers are keen to find the alternative effective therapeutic agents for treating AD. This review summarizes the recent advancement in nanotechnology-based drug delivery systems of herbal drugs such as Curcumin, Ginkgo biloba, Salvia officinalis, etc for the prevention and cure of AD. Herbal drugs proved useful in treating neuronal disorders such as AD but exhibited some limitations like low bioavailability via oral drug delivery. Such limitations were overcome by tagging these drugs by nanoparticles which enables them to cross the blood-brain barrier and offer the delivery of greater concentration of herbal drugs to the brain. Inorganic nanoparticle-based drugdelivery systems such as gold nanoparticles and magnetic nanoparticles, organic nanoparticulate systems like polymeric micelles and dendrimers, and solid polymeric nanoparticles were some of the effective methods that have earlier shown potential for enhancing the delivery of herbal drugs to the brain. Long-term repeated injection of drugs loaded on nanomaterials can lead to the accumulation of nanomaterials in the body without timely and effective degradation which can cause serious issues to the brain. Hence, nanotechnology-based strategies should involve the formulation of nontoxic nanoparticles in such a way that they can significantly transport the drugs across the BBB followed by effective degradation of nanoparticles.

基于纳米技术的中草药治疗阿尔茨海默病药物传递平台的最新进展。
阿尔茨海默病(AD)是一种不可逆转的脑部疾病,会导致记忆丧失并扰乱日常生活。早期治疗阿尔茨海默病的策略,如乙酰胆碱酯酶抑制剂(AChEI)药物,由于无法通过血脑屏障,没有显示出有效性。此外,传统的AChEI在治疗AD的生物利用度和溶解度方面的疗效有限。目前用于治疗这种疾病的许多药物,如多奈哌齐,都显示出有害的副作用。因此,研究人员迫切希望找到治疗AD的替代有效药物。本文综述了姜黄素、银杏、鼠尾草等中药纳米给药系统在防治阿尔茨海默病中的研究进展。草药被证明在治疗神经疾病如阿尔茨海默氏症方面是有用的,但表现出一些局限性,如口服给药的生物利用度低。通过给这些药物贴上纳米颗粒的标签,克服了这些限制,使它们能够穿过血脑屏障,并向大脑输送更高浓度的草药。无机纳米颗粒为基础的药物输送系统,如金纳米颗粒和磁性纳米颗粒,有机纳米颗粒系统,如聚合物胶束和树状大分子,以及固体聚合物纳米颗粒是一些有效的方法,早期已经显示出增强草药向大脑输送的潜力。长期反复注射装载在纳米材料上的药物会导致纳米材料在体内的积累,而不能及时有效地降解,从而对大脑造成严重的问题。因此,基于纳米技术的策略应该包括无毒纳米颗粒的配方,这样它们就可以在有效降解纳米颗粒之后显著地将药物运输过血脑屏障。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pharmaceutical nanotechnology
Pharmaceutical nanotechnology Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
4.20
自引率
0.00%
发文量
46
期刊介绍: Pharmaceutical Nanotechnology publishes original manuscripts, full-length/mini reviews, thematic issues, rapid technical notes and commentaries that provide insights into the synthesis, characterisation and pharmaceutical (or diagnostic) application of materials at the nanoscale. The nanoscale is defined as a size range of below 1 µm. Scientific findings related to micro and macro systems with functionality residing within features defined at the nanoscale are also within the scope of the journal. Manuscripts detailing the synthesis, exhaustive characterisation, biological evaluation, clinical testing and/ or toxicological assessment of nanomaterials are of particular interest to the journal’s readership. Articles should be self contained, centred around a well founded hypothesis and should aim to showcase the pharmaceutical/ diagnostic implications of the nanotechnology approach. Manuscripts should aim, wherever possible, to demonstrate the in vivo impact of any nanotechnological intervention. As reducing a material to the nanoscale is capable of fundamentally altering the material’s properties, the journal’s readership is particularly interested in new characterisation techniques and the advanced properties that originate from this size reduction. Both bottom up and top down approaches to the realisation of nanomaterials lie within the scope of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信