{"title":"A Comprehensive Review on Plant Bioactive Compounds-Based Novel Drug Delivery System for the Treatment of Rheumatoid Arthritis.","authors":"Akshat Agrawal, Vijayalakshmi Ghosh, Ajaz Uddin, Parag Jain","doi":"10.2174/0122117385333643241016075918","DOIUrl":null,"url":null,"abstract":"<p><p>Rheumatoid Arthritis (RA) is a chronic autoimmune disorder characterized by inflammation in the joints, leading to pain, swelling, stiffness, and eventual joint damage. This condition occurs when the body's immune system mistakenly attacks the synovium, the lining of the membranes surrounding the joints. Treatment focuses on reducing inflammation, alleviating pain, and preventing joint damage through a combination of medications, physical therapy, and lifestyle modifications. Recently, biological therapies have been introduced, including Tumour Necrosis Factor (TNF) blockers (such as etanercept, infliximab, and adalimumab), IL-6 inhibitors (tocilizumab), and interleukin- 1 inhibitors (anakinra). These treatments can lead to various side effects. The use of herbalbased treatments, such as secondary metabolites, has gained popularity due to their better tolerability, safety, and effectiveness compared to conventional therapies. However, there are also some limitations, like poor bioavailability and permeability and lower stability; to overcome these issues, Novel Drug Delivery Systems (NDDS) have been introduced as better treatment options in recent years. Polymer science advancements and nanotechnology applications have opened new avenues for RA treatment, emphasizing the development of smart drug delivery systems. These systems aim to improve therapeutic outcomes while minimizing adverse effects. Additionally, newly synthesized biocompatible drug delivery systems, combined with anti-inflammatory drugs composed of secondary metabolites, offer potential solutions for RA.</p>","PeriodicalId":19774,"journal":{"name":"Pharmaceutical nanotechnology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0122117385333643241016075918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0
Abstract
Rheumatoid Arthritis (RA) is a chronic autoimmune disorder characterized by inflammation in the joints, leading to pain, swelling, stiffness, and eventual joint damage. This condition occurs when the body's immune system mistakenly attacks the synovium, the lining of the membranes surrounding the joints. Treatment focuses on reducing inflammation, alleviating pain, and preventing joint damage through a combination of medications, physical therapy, and lifestyle modifications. Recently, biological therapies have been introduced, including Tumour Necrosis Factor (TNF) blockers (such as etanercept, infliximab, and adalimumab), IL-6 inhibitors (tocilizumab), and interleukin- 1 inhibitors (anakinra). These treatments can lead to various side effects. The use of herbalbased treatments, such as secondary metabolites, has gained popularity due to their better tolerability, safety, and effectiveness compared to conventional therapies. However, there are also some limitations, like poor bioavailability and permeability and lower stability; to overcome these issues, Novel Drug Delivery Systems (NDDS) have been introduced as better treatment options in recent years. Polymer science advancements and nanotechnology applications have opened new avenues for RA treatment, emphasizing the development of smart drug delivery systems. These systems aim to improve therapeutic outcomes while minimizing adverse effects. Additionally, newly synthesized biocompatible drug delivery systems, combined with anti-inflammatory drugs composed of secondary metabolites, offer potential solutions for RA.
期刊介绍:
Pharmaceutical Nanotechnology publishes original manuscripts, full-length/mini reviews, thematic issues, rapid technical notes and commentaries that provide insights into the synthesis, characterisation and pharmaceutical (or diagnostic) application of materials at the nanoscale. The nanoscale is defined as a size range of below 1 µm. Scientific findings related to micro and macro systems with functionality residing within features defined at the nanoscale are also within the scope of the journal. Manuscripts detailing the synthesis, exhaustive characterisation, biological evaluation, clinical testing and/ or toxicological assessment of nanomaterials are of particular interest to the journal’s readership. Articles should be self contained, centred around a well founded hypothesis and should aim to showcase the pharmaceutical/ diagnostic implications of the nanotechnology approach. Manuscripts should aim, wherever possible, to demonstrate the in vivo impact of any nanotechnological intervention. As reducing a material to the nanoscale is capable of fundamentally altering the material’s properties, the journal’s readership is particularly interested in new characterisation techniques and the advanced properties that originate from this size reduction. Both bottom up and top down approaches to the realisation of nanomaterials lie within the scope of the journal.