Resveratrol ameliorates postoperative cognitive dysfunction in aged mice by regulating microglial polarization through CX3CL1/CX3CR1 signaling axis.

IF 2.5 4区 医学 Q3 NEUROSCIENCES
Jinming Liu, Yong Wang, Hong Sun, Daoyun Lei, Jufeng Liu, Yuanhui Fei, Chunhui Wang, Chao Han
{"title":"Resveratrol ameliorates postoperative cognitive dysfunction in aged mice by regulating microglial polarization through CX3CL1/CX3CR1 signaling axis.","authors":"Jinming Liu, Yong Wang, Hong Sun, Daoyun Lei, Jufeng Liu, Yuanhui Fei, Chunhui Wang, Chao Han","doi":"10.1016/j.neulet.2024.138089","DOIUrl":null,"url":null,"abstract":"<p><p>Postoperative cognitive dysfunction (POCD) is a common cognitive challenge faced by older adults. One of the key contributors to the development of POCD is neuroinflammation induced by microglia. Resveratrol has emerged as a promising candidate for the prevention of cognitive decline. Previous studies have demonstrated its potential in alleviating cognitive deterioration, yielding encouraging results. Nonetheless, the mechanism of resveratrol improving cognitive function remains unclear. Therefore, we assessed the effect of resveratrol in both aged POCD model mice and BV2 cells on CX3CL1/CX3CR1 axis, a critical signaling pathway mediating microglial activity. Both in vitro and in vivo experiments have revealed that pre-administration of resveratrol not only mitigates cognitive deficits but also significantly reduces the levels of inflammatory cytokines. Additionally, it enhanced the expression of SIRT1 and CX3CR1 within the hippocampal region. We also evaluated the impact of resveratrol on CX3CR1 siRNA transfected BV2 cells. Delete of CX3CR1 reversed the preventive role of resveratrol. Our findings implied that resveratrol might inhibit microglial activation and improve cognition by mediating CX3CL1/CX3CR1 signaling.</p>","PeriodicalId":19290,"journal":{"name":"Neuroscience Letters","volume":" ","pages":"138089"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience Letters","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neulet.2024.138089","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Postoperative cognitive dysfunction (POCD) is a common cognitive challenge faced by older adults. One of the key contributors to the development of POCD is neuroinflammation induced by microglia. Resveratrol has emerged as a promising candidate for the prevention of cognitive decline. Previous studies have demonstrated its potential in alleviating cognitive deterioration, yielding encouraging results. Nonetheless, the mechanism of resveratrol improving cognitive function remains unclear. Therefore, we assessed the effect of resveratrol in both aged POCD model mice and BV2 cells on CX3CL1/CX3CR1 axis, a critical signaling pathway mediating microglial activity. Both in vitro and in vivo experiments have revealed that pre-administration of resveratrol not only mitigates cognitive deficits but also significantly reduces the levels of inflammatory cytokines. Additionally, it enhanced the expression of SIRT1 and CX3CR1 within the hippocampal region. We also evaluated the impact of resveratrol on CX3CR1 siRNA transfected BV2 cells. Delete of CX3CR1 reversed the preventive role of resveratrol. Our findings implied that resveratrol might inhibit microglial activation and improve cognition by mediating CX3CL1/CX3CR1 signaling.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Neuroscience Letters
Neuroscience Letters 医学-神经科学
CiteScore
5.20
自引率
0.00%
发文量
408
审稿时长
50 days
期刊介绍: Neuroscience Letters is devoted to the rapid publication of short, high-quality papers of interest to the broad community of neuroscientists. Only papers which will make a significant addition to the literature in the field will be published. Papers in all areas of neuroscience - molecular, cellular, developmental, systems, behavioral and cognitive, as well as computational - will be considered for publication. Submission of laboratory investigations that shed light on disease mechanisms is encouraged. Special Issues, edited by Guest Editors to cover new and rapidly-moving areas, will include invited mini-reviews. Occasional mini-reviews in especially timely areas will be considered for publication, without invitation, outside of Special Issues; these un-solicited mini-reviews can be submitted without invitation but must be of very high quality. Clinical studies will also be published if they provide new information about organization or actions of the nervous system, or provide new insights into the neurobiology of disease. NSL does not publish case reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信