Wiam El Kheir, Sahar Naasri, Bernard Marcos, Nick Virgilio, Benoit Paquette, Nathalie Faucheux, Marc-Antoine Lauzon
{"title":"CXCL12 impact on glioblastoma cells behaviors under dynamic culture conditions: Insights for developing new therapeutic approaches.","authors":"Wiam El Kheir, Sahar Naasri, Bernard Marcos, Nick Virgilio, Benoit Paquette, Nathalie Faucheux, Marc-Antoine Lauzon","doi":"10.1371/journal.pone.0315038","DOIUrl":null,"url":null,"abstract":"<p><p>Glioblastoma multiforme (GBM) is the most prevalent malignant brain tumor, with an average survival time of 14 to 20 months. Its capacity to invade brain parenchyma leads to the failure of conventional treatments and subsequent tumor recurrence. Recent studies have explored new therapeutic strategies using a chemoattracting gradient to attract GBM cells into a soft hydrogel trap where they can be exposed to higher doses of radiation or chemotherapy. It has been demonstrated in vitro under static conditions, that nanoparticles (NPs) encapsulating the chemoattractant CXCL12 can create a gradient to attract GBM cell. However, GBM cell invasion is also largely dependent on interstitial fluid flow (IFF). In the present study, a custom-made in vitro 3D model with indirect perfusion to mimic IFF at flow rates of 0.5 μL/min and 3 μL/min was used to examine the invasive behavior of F98-rodent-derived and U87-human-derived GBM cells. This model simulated IFF and CXCL12 gradient within an alginate:matrigel-based hydrogel mimicking brain parenchyma. Findings revealed that CXCL12 (1600 ng/mL) released from NPs significantly increased the migration of F98 GBM cells after 72 hours under IFF conditions at both 0.5 and 3 μL/min. In contrast, U87 GBM cells required a higher CXCL12 concentration (2400 ng/mL) and longer incubation time for migration (120 hours). Unlike the F98 cells, U87 GBM cells showed a CXCL12 dose-dependent proliferation. Semi-quantitative qPCR showed higher CXCR4 mRNA levels in F98 cells than in U87 cells. CXCL12 significantly increased intracellular calcium levels via CXCR4 activation, with a 2.3-fold rise in F98 cells compared to U87, consistent with observed cell behavior during perfusion. This highlights the combined influence of IFF and CXCL12 on cell migration, dependent on cell line. This 3D dynamic model is a valuable tool to analyze parameters like interstitial fluid flow (IFF) and chemokine gradients, influenced by GBM tumor diversity.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"19 12","pages":"e0315038"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0315038","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Glioblastoma multiforme (GBM) is the most prevalent malignant brain tumor, with an average survival time of 14 to 20 months. Its capacity to invade brain parenchyma leads to the failure of conventional treatments and subsequent tumor recurrence. Recent studies have explored new therapeutic strategies using a chemoattracting gradient to attract GBM cells into a soft hydrogel trap where they can be exposed to higher doses of radiation or chemotherapy. It has been demonstrated in vitro under static conditions, that nanoparticles (NPs) encapsulating the chemoattractant CXCL12 can create a gradient to attract GBM cell. However, GBM cell invasion is also largely dependent on interstitial fluid flow (IFF). In the present study, a custom-made in vitro 3D model with indirect perfusion to mimic IFF at flow rates of 0.5 μL/min and 3 μL/min was used to examine the invasive behavior of F98-rodent-derived and U87-human-derived GBM cells. This model simulated IFF and CXCL12 gradient within an alginate:matrigel-based hydrogel mimicking brain parenchyma. Findings revealed that CXCL12 (1600 ng/mL) released from NPs significantly increased the migration of F98 GBM cells after 72 hours under IFF conditions at both 0.5 and 3 μL/min. In contrast, U87 GBM cells required a higher CXCL12 concentration (2400 ng/mL) and longer incubation time for migration (120 hours). Unlike the F98 cells, U87 GBM cells showed a CXCL12 dose-dependent proliferation. Semi-quantitative qPCR showed higher CXCR4 mRNA levels in F98 cells than in U87 cells. CXCL12 significantly increased intracellular calcium levels via CXCR4 activation, with a 2.3-fold rise in F98 cells compared to U87, consistent with observed cell behavior during perfusion. This highlights the combined influence of IFF and CXCL12 on cell migration, dependent on cell line. This 3D dynamic model is a valuable tool to analyze parameters like interstitial fluid flow (IFF) and chemokine gradients, influenced by GBM tumor diversity.
期刊介绍:
PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides:
* Open-access—freely accessible online, authors retain copyright
* Fast publication times
* Peer review by expert, practicing researchers
* Post-publication tools to indicate quality and impact
* Community-based dialogue on articles
* Worldwide media coverage