The measurement of phenols with graphitic carbon fiber microelectrodes and fast-scan cyclic voltammetry.

IF 2.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Cam Abdullaeva, Nadiah Alyamni, Jackie Jessen-Hegelbach, Alexander G Zestos
{"title":"The measurement of phenols with graphitic carbon fiber microelectrodes and fast-scan cyclic voltammetry.","authors":"Cam Abdullaeva, Nadiah Alyamni, Jackie Jessen-Hegelbach, Alexander G Zestos","doi":"10.1088/1361-6528/ada299","DOIUrl":null,"url":null,"abstract":"<p><p>A phenol contains a six-membered, conjugated, aromatic ring that is bound to a hydroxyl group. These molecules are important in biomedical studies, aromatic food preparation, and petroleum engineering. Traditionally, phenols have been measured with several analytical techniques such as UV-VIS spectroscopy, fluorescence, liquid chromatography, and mass spectrometry. These assays provide for relatively high sensitivity and selectivity measurements, but they suffer from relatively low spatiotemporal resolution, low biocompatibility, long analysis time, high cost, and complex sample treatment. Recently, electrochemistry has served as a viable alternative to the measurement of phenols. In this study, we utilized carbon fiber microelectrodes (CFMEs) with fast-scan cyclic voltammetry (FSCV) for the sensitive and selective measurement of phenols. We tested four common phenolic compounds: phenol, 2-methylaminophenol (2-MAP), 4-methylaminophenol (4-MAP), and 3-hydroxybenzoic acid (3-HBA). We found that phenol, 2-MAP, 4-MAP, and 3-HBA were all partially adsorption and diffusion controlled to the surface of the CFMEs and that all four molecules could be detected with repeated injections. Structural differences between the phenols led to varied sensitivities amongst the four phenols, and we were able to co-detect and differentiate the phenols in complex solutions with dopamine and serotonin. Lastly, we measured the phenols in simulated urine with a high percent recovery. These assays demonstrate enhanced electrochemical measurement of phenols, which will create more effective diagnostics for these complex molecules to help elucidate their mechanistic properties and ultimate significance.&#xD.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/ada299","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A phenol contains a six-membered, conjugated, aromatic ring that is bound to a hydroxyl group. These molecules are important in biomedical studies, aromatic food preparation, and petroleum engineering. Traditionally, phenols have been measured with several analytical techniques such as UV-VIS spectroscopy, fluorescence, liquid chromatography, and mass spectrometry. These assays provide for relatively high sensitivity and selectivity measurements, but they suffer from relatively low spatiotemporal resolution, low biocompatibility, long analysis time, high cost, and complex sample treatment. Recently, electrochemistry has served as a viable alternative to the measurement of phenols. In this study, we utilized carbon fiber microelectrodes (CFMEs) with fast-scan cyclic voltammetry (FSCV) for the sensitive and selective measurement of phenols. We tested four common phenolic compounds: phenol, 2-methylaminophenol (2-MAP), 4-methylaminophenol (4-MAP), and 3-hydroxybenzoic acid (3-HBA). We found that phenol, 2-MAP, 4-MAP, and 3-HBA were all partially adsorption and diffusion controlled to the surface of the CFMEs and that all four molecules could be detected with repeated injections. Structural differences between the phenols led to varied sensitivities amongst the four phenols, and we were able to co-detect and differentiate the phenols in complex solutions with dopamine and serotonin. Lastly, we measured the phenols in simulated urine with a high percent recovery. These assays demonstrate enhanced electrochemical measurement of phenols, which will create more effective diagnostics for these complex molecules to help elucidate their mechanistic properties and ultimate significance. .

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanotechnology
Nanotechnology 工程技术-材料科学:综合
CiteScore
7.10
自引率
5.70%
发文量
820
审稿时长
2.5 months
期刊介绍: The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信