{"title":"Preparation of novel B/ZnO/zeolite nanocomposites by simple combustion method for enhanced dye removal in an aqueous environment.","authors":"Thu Huong Nguyen, Le Van Duong, Anh-Tuan Vu","doi":"10.1088/1361-6528/ada29b","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, the mixture of zinc acetate dehydrates and boric acid was pyrolyzed in zeolite X to prepare novel B/ZnO/zeolite nanocomposites for the enhanced removal of tartrazine (TA) in aqueous environment. The composites are porous material with a relatively large pore size (35.3 nm). The surface area of the composite (19.72 m<sup>2</sup>g<sup>-1</sup>) is smaller than that of zeolite (248.78 m<sup>2</sup>g<sup>-1</sup>), but its adsorption capacity is quite high (<i>q</i><sub>max</sub>of 97.6 mg g<sup>-1</sup>). The factors influencing the adsorption process were investigated in detail. Under the optimal conditions (the initial dye concentration of 20 mg l<sup>-1</sup>, the adsorbent content of 0.5 g l<sup>-1</sup>, pH equal 6, and the temperature of 25°C), the removal efficiency (<i>R</i><sub>e</sub>) was 97.5%. The first and second-order equations were used to model the kinetic adsorption. The Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich models were used to study isothermal adsorption. In addition, the thermodynamic of adsorption was also investigated. The Δ<i>H</i><sup>o</sup>of -52.423±2.306 kJ mol<sup>-1</sup>indicates the exothermic process and the negative Δ<i>G</i><sup>o</sup>indicates a spontaneous process. At low temperatures, the adsorption of TA proceeds smoother and more effectively, and the negative Δ<i>S</i><sup>o</sup>(-129.638 7.376 J·mol<sup>-1</sup>·K<sup>-1</sup>) indicates a decrease in the degree of freedom of the adsorbed species. The adsorption mechanism was also proposed.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/ada29b","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, the mixture of zinc acetate dehydrates and boric acid was pyrolyzed in zeolite X to prepare novel B/ZnO/zeolite nanocomposites for the enhanced removal of tartrazine (TA) in aqueous environment. The composites are porous material with a relatively large pore size (35.3 nm). The surface area of the composite (19.72 m2g-1) is smaller than that of zeolite (248.78 m2g-1), but its adsorption capacity is quite high (qmaxof 97.6 mg g-1). The factors influencing the adsorption process were investigated in detail. Under the optimal conditions (the initial dye concentration of 20 mg l-1, the adsorbent content of 0.5 g l-1, pH equal 6, and the temperature of 25°C), the removal efficiency (Re) was 97.5%. The first and second-order equations were used to model the kinetic adsorption. The Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich models were used to study isothermal adsorption. In addition, the thermodynamic of adsorption was also investigated. The ΔHoof -52.423±2.306 kJ mol-1indicates the exothermic process and the negative ΔGoindicates a spontaneous process. At low temperatures, the adsorption of TA proceeds smoother and more effectively, and the negative ΔSo(-129.638 7.376 J·mol-1·K-1) indicates a decrease in the degree of freedom of the adsorbed species. The adsorption mechanism was also proposed.
期刊介绍:
The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.